
— Please — Please — DO NOT Distribute! — Thank You! — Thank You! —

Kneel Before

Zodd
Discrete Structures

for

Computer Science

Lester I. McCann
— Draft — Draft — Draft — August 16, 2023 — Draft — Draft — Draft —

ii

Preface
This is a collection of draft chapters of what may someday become a full

discrete structures textbook. I roughly write roughly two rough chapters per
summer, during those summers that I have time to write chapters, at which
rate this book will be finished sometime after the year 2022. By the time it
is finished, I expect that people will be even less inclined to read books than
they are now, which suggests that I may be writing this only for myself. It’s
a good thing I’m happy with it so far.

While this book is still incomplete, I ask that you, dear student of CSc 245
in the Department of Computer Science at the University of Arizona, do not
share it with anyone outside of the class. This means that you may not post
it on your web page, upload it to the cloud, ship it to the New York Times to
be reviewed, send it to a major motion picture studio, use it as the basis for
a new political party, or accept it as the holy book of a fledgling religion.1

You may attempt to learn from it. I’ll grant you that doing so would be
easier if I had spent some time writing exercises. The reality is that writing
exercises is absolutely no fun, which explains why most discrete structures
books have so few. Until creating them becomes fun, or at least becomes
interesting enough to compete with cleaning bathrooms or staring vacantly
out a window, this book won’t come with any exercises. And no, I’m not
accepting contributions.

These chapters were created with the help of the following software tools:

• Donald Knuth’s TEX document preparation system (http://tug.org/).

• Leslie Lamport’s LATEX macro collection (http://latex-project.org).

• John Hobby’s MetaPost picture-drawing language (http://ect.bell-labs.
com/who/hobby/MetaPost.html).

• L. Peter Deutsch’s Ghostscript software suite (http://www.ghostscript.
com/).

• GIMP, the GNU Image Manipulation Program (http://www.gimp.org/).

• A whole bunch of add-on LATEX packages, including but not limited to:
1These days, there are people who consider the last two to be the same thing.

http://tug.org/
http://latex-project.org
http://ect.bell-labs.com/who/hobby/MetaPost.html
http://ect.bell-labs.com/who/hobby/MetaPost.html
http://www.ghostscript.com/
http://www.ghostscript.com/
http://www.gimp.org/

iii

– graphicx (http://ctan.org/pkg/graphicx).

– mdframed (http://www.ctan.org/pkg/mdframed).

– marginnote (http://www.ctan.org/pkg/marginnote).

– hyperref (http://ctan.org/pkg/hyperref).

Two notes about the effects of these packages. First, whenever there’s a
reference a figure or example, the number of that item is actually a link to it.
If you’re using a capable PDF viewer, you can click on the number and jump
directly to the source – if the source is in the same file. Jumping back . . . well,
you’ll have to handle that yourself. Second, mdframed allows the examples
to span page breaks. As you read the chapters, you’ll probably see examples
that just barely start on one page or just barely extend to the following page.
This doesn’t look wonderful, and it can be avoided, but while this book is in
draft form (that is, while I’m still making frequent tweaks to the content), the
fix is more trouble than is the problem. No doubt such quirks of formatting
will make you love discrete math all the more.

Whenever I remembered to do it, I included the LATEX commands used to
create special symbols used in the chapters. These commands are generally
provided with the first appearance of the symbol, especially if you consider
the Math Review appendix to be Chapter 0. That’s not unreasonable; it was
the first part to be written, in the summer of 2012.

The decision not to reset the example-numbering at the start of each chap-
ter was intentional. On many occasions, students have emailed me to ask
about ‘example n,’ but they forgot to say which chapter’s example n they
mean. That won’t happen in this book! Besides, having examples number
into the hundreds looks really impressive.

Also intentional was my decision to close quotes before punctuation sym-
bols when the quoting was for a term, a constant, or the like. If the quotes
are for an actual quote, then I tried to follow the normal rules. For example,
I’d write that the first term of a sequence is ’3’, but would instead write, when
quoting a trenchant observation, “Oh, what sad times are these when passing
ruffians can say ‘Ni’ at will to old ladies.”2

Finally, I acknowledge that I have acquired permission to use the various
images and quoted material found in this text from exactly none of the copy-
right holders. Why not? First, I’m using those images neither to make money
nor to harm the copyright holders. Second, I’m distributing this book via a

2Roger the Shrubber, “Monty Python and the Holy Grail.” See? Normal quoting rules
there, too. I’m not a total heathen!

http://ctan.org/pkg/graphicx
http://www.ctan.org/pkg/mdframed
http://www.ctan.org/pkg/marginnote
http://ctan.org/pkg/hyperref

iv

password-protected web page so that the only people who see it are instruc-
tors and students of CSc 245 at the University of Arizona. Third, and most
important, using images such as these in a work such as this is covered by
the ‘fair use’ exception to the U.S. copyright laws, an exception that has long
allowed instructors to use pieces of copyrighted material in their teaching for
educational purposes.3

3So, kindly be educated (or at least amused) by them!

Contents

Contents v

1 Logic 1
1.1 What is Logic? . 1
1.2 Propositional Logic . 2
1.3 Logical Connectives . 5
1.4 More English ⇔ Logic Conversions 25
1.5 Logical Equivalence . 29

2 Quantified Expressions 41
2.1 Propositions to Predicates . 41
2.2 Evaluating Predicates . 44
2.3 More Detail on Universal Quantification 47
2.4 More Detail on Existential Quantification 52
2.5 Mixing Universal and Existential Quantification 58
2.6 Generalized De Morgan’s Laws 61
2.7 “Exactly n” Expressions . 62

3 Logical Arguments 71
3.1 Reasoning . 72
3.2 Categorizing Deductive Arguments 77
3.3 Rules of Inference for Propositions 80
3.4 Rules of Inference for Predicates 91
3.5 Fallacies . 98

4 Direct Proofs 107
4.1 The Heartbreak of Probarephobia 107
4.2 Proof Preliminaries . 109
4.3 Direct Proofs . 116
4.4 Disproving Conjectures . 132

v

vi CONTENTS

5 Indirect (“Contra”) Proofs 137
5.1 Proof by Contraposition . 137
5.2 Proof by Contradiction . 141
5.3 Proving Biconditional Conjectures 148
5.4 Summary of Direct and Indirect Proof Techniques 151

6 Additional Set Concepts 153
6.1 What is So Important about Sets? 153
6.2 Logical Representation of Basic Set Operators 157
6.3 Some Useful Set Concepts . 161
6.4 Set Identities . 169
6.5 Choosing a Set Representation 177

7 Matrices 183
7.1 The Utility of Matrices . 183
7.2 Matrix Fundamentals . 185
7.3 Numeric Matrix Operations . 193
7.4 Matrix Powers and the Identity Matrix 204
7.5 Matrix Operations in Orthographic Projections 214
7.6 Logical Matrices . 218

8 Relations 229
8.1 (Binary) Relations . 229
8.2 Creating Relations from Relations 232
8.3 Graph Representations of Relations 242
8.4 Four Properties of Binary Relations 245
8.5 Matrix Representations of Relations 262
8.6 Equivalence Relations . 272
8.7 Partial Orders . 278
8.8 Total Orders . 286

A Math Review 291
A.1 Fractions . 291
A.2 Rational Numbers . 292
A.3 Set Basics . 294
A.4 Associativity, Friends and a Distant Cousin 300
A.5 Properties of Inequalitites . 303
A.6 Summation and Product Notations 306
A.7 Integer Division . 310
A.8 Evens and Odds . 312

CONTENTS vii

A.9 Logarithms and Exponents . 313
A.10 Working with Quadratic Equations 316
A.11 Positional Number Systems . 321

Chapter 1

Logic

A major topic in most discrete structures books, this one included, is proof
techniques. Proofs are arguments, arguments are built from inferences, in-
ferences are implications, and an implication is an operator that applies to
logical propositions. To understand proofs, we need to start with logic.

1.1 What is Logic?
In brief, logic logicis the art of intellectual persuasion, and comes in many forms.
For our purposes, we consider the branches known as philosophical and math-
ematical logic.

Definition 1: Philosophical Logic philosophical logic

Philosophical Logic is the study of thought and reasoning as expressed in
natural languages.

Definition 2: Mathematical Logic mathematical logic

Mathematical Logic is the use of formal languages to represent reasoning
and computation.

Neither of these definitions is universally accepted by philosophers or math-
ematicians, but they are adequate to show that logic as used in computer sci-

1

2 CHAPTER 1. LOGIC

ence is not easily pigeonholed.1 In this book, we will use concepts from both
categories.

Our path to proofs will begin with propositional logic,propositional logic also known as sen-
tential calculus.2. As the name suggests, the key idea is that of propositions,
which are logical formulae, often compounded with logical operators, that eval-
uate to the values of true or false. Of particular use to us will be first-order
logic.first-order logic In FOL (also known as (first-order) predicate calculus, or FOPC), the
formulae are propositions that can be augmented with quantified variables, as
we will see in Chapter 2. The variables represent values drawn from specified
domains.

For most of the rest of this chapter, we will consider variables to be ‘ille-
gal’ within propositions. As mentioned above, we will be using them within
quantified expressions, but that’s the next chapter.

First-order logic is all we need to present the material in this book, but logic
doesn’t stop there. Immediately beyond FOL is second-order logicsecond-order logic (SOL3).
SOL extends FOL by permitting variables to represent entire sets, and even
functions, rather than just values drawn from sets. There are even higher-
order logics if SOL isn’t enough for your needs.

An example from programming might help make the FOL – SOL distinc-
tion more clear. Most programming languages allow you to (and often insist
that you) declare variables before they are used. In C-like languages, you
do this with a statement of the form int a;. In subsequent statements, a
can hold values from the domain of integers. That’s also how variables work
in FOL. Now imagine that you could declare a variable that can hold entire
categories of numbers, rather than individual values. One moment, variable b
represents all integers; the next, it represents all rational numbers. That sort
of thing is possible with SOL variables.

1.2 Propositional Logic
A formal definition of ‘proposition’ is a good place to start:

1Oooo, foreshadowing!
2‘Sentential’ from ‘sentence’ (another substitute for ‘proposition’), and ‘calculus’ mean-

ing any calculation or computation technique (not just the one with derivatives and integra-
tion!)

3I know, I know; grow up!

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

1.2. PROPOSITIONAL LOGIC 3

Definition 3: Proposition proposition

A proposition (alternatively, statement) is a claim that is either true or
false within a given context.

We use ‘claim’ in this definition to make it applicable outside of the realm
of mathematical expressions.

1.2.1 Simple Propositions

Propositions come in subtypes, of which the simplest is the aptly-named simple
proposition.

Definition 4: Simple Proposition simple proposition

A simple proposition is a proposition that includes no logical operators.

Distinguishing propositions from non-propositions can be a bit tricky. A
few examples should help.

Example 1:

The following claims are propositions; they are either true or false:

• Radon is a noble gas. (True; one of the six that are natural)

• Bill Gates graduated from Harvard. (False; he dropped out)

• 3 ∗ (4 ∗ 5) = (3 ∗ 4) ∗ 5 (True; by associativity)

• 9.95 is irrational. (False; it is rational)

These ‘claims’ are not propositions, for the reasons given:

• 2log8 x = 4 (We can’t evaluate its truth without a value for x)

• a ∗ b = b ∗ a (What types are a and b? Does ‘*’ apply to them?)

• Is your refrigerator running? (That’s a question, not a claim.)

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

4 CHAPTER 1. LOGIC

• Don’t open your present early! (A command, not a claim.)

The first two non-propositions suffer from a lack of context; the variables
aren’t explained. The last two aren’t statements of fact; they do not evaluate
to true or false. Please remember that a claim is a proposition when it eval-
uates to true or false. A proposition is still a proposition whether or not you
know to which of those it evaluates! Your lack of knowledge does not change
the categorization of the statement.

Giving propositions (simple or otherwise) a ‘name’ aids identification.
These names are called proposition labelsproposition labels or statement labels and are tradition-
ally single lower-case letters written ahead of the proposition and separated
with a colon. For example, “r: Radon is a noble gas”.

There are two acceptable schemes for choosing proposition labels. The
first is to use, in order, the letters ‘p’, ‘q’, ‘r’, ‘s’, etc.4 The second is to choose
a letter that reminds you of the proposition. In the above example, ‘r’ is the
first letter of ‘radon’. Yes, we could use longer (more meaningful) names, but
soon we will be creating long compound propositions for which short names
are a significant convenience.

1.2.2 Compound Propositions

To represent more complex claims, we use compound propositions.

Definition 5: Compound Propositioncompound proposition

A proposition that is a logical combination of simple propositions is a
compound proposition.

Definition 5 leads to an obvious question: “With what do we combine
them?” The answer is, in part, familiar to generations of children who grew
up watching the “Schoolhouse Rock” educational videos. ABC’s 1973 three-
minute grammar animation called “Conjunction Junction”, although created
to explain a specific part of English sentence structure, is also a nice introduc-
tion to two logical operators.5 Figure 1.1 might bring back some memories.

4Why start with ‘p’? ‘p’ is for ‘proposition’! It’s in every one of those alphabet books
for children . . . or should be.

5You can see this and several others at www.youtube.com/user/SchoolhouseRockVids

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

http://www.youtube.com/user/SchoolhouseRockVids

1.3. LOGICAL CONNECTIVES 5

Figure 1.1: ABC’s “Conjunction Junction” educational cartoon explained
‘and’ and ‘or’ to children using a train car metaphor. Credit: The Walt
Disney Company.

1.3 Logical Connectives
This section introduces the commonly-used logical connectives6 (a.k.a. logical
operators) shown in Table 1.

Table 1: Common Logical Connectives

Connective In Brief Symbol(s) LATEX
conjunction and p ∧ q \land

inclusive disjunction or p ∨ q \lor
exclusive disjunction xor p⊕ q, p Y q \oplus, \veebar

negation not ¬p, p \neg, \overline{}
implication if-then p→ q \to
biimplication iff p↔ q \leftrightarrow

Before we get to the connectives, we start with a useful tool for examining
the situations in which propositions are true or false: Truth tables.

6Negation doesn’t do any connecting, as it does not bring together two propositions, but
it is a logical operator, and as such is frequently grouped with the others.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

6 CHAPTER 1. LOGIC

1.3.1 Truth Tables

You can think of truth tables as interrogation tools used to get propositions to
tell us everything they know. That is, their purpose is to show the complete set
of possible evaluations for propositions. Knowing exactly when a proposition
evaluates to ‘true’ is often quite useful.

Table 2: Dissection of a Truth Table

variables ⇒ p q p ∨ q q ∧ (p ∨ q) ⇐ proposition sequence
T T T T

all possible ⇒ T F T F ⇐ proposition
truth value F T T T evaluations

combinations F F F F

A truth table is divided into four quadrants, as illustrated in Table 2:

• Upper-Left: The variables used by the proposition being evaluated,
often ordered to aid the evaluation of the proposition. Note that each
variable heads its own column.

• Lower-Left: This quadrant lists all of the possible combinations of
values that can be assigned to the variables, one combination per row.
It is traditional in both logic and mathematics to use the symbols ‘T’
for ‘true’ and ‘F’ for ‘false’, and to order the rows such that the first
row is all ‘true’, the last is all ‘false’, and in-between the values change
in the same manner as binary digits are incremented. We can look at
the pattern another way. The right-most variable’s column alternates
between ‘T’ and ‘F’. The values of its neighbor to the left alternate also,
but in groups of two (‘TT’, ‘FF’, ‘TT’, ‘FF’, etc.). If there is a third
column, we alternate by groups of four (yes, this is based on powers of
two).

• Upper-Right: Here we use a sequence of propositions to ‘build up’ to
the proposition in question. Typically, each proposition adds an opera-
tor to the previous one. As we will demonstrate later, it is sometimes
convenient to repeat a column to avoid making silly mistakes.

• Lower-Right: This is where we evaluate each proposition in the se-
quence, left to right, ending with the evaluation of the proposition in

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

1.3. LOGICAL CONNECTIVES 7

question. Thus, the final (right-most) column is the one in which we are
likely the most interested.

Categories of Propositions

The following definitions provide three categories of propositions, based on
how often they evaluate to true and false.

Definition 6: Tautology tautology

A tautology is a proposition that always evaluates to true.

Definition 7: Contradiction contradiction

A proposition that always evaluates to false is a contradiction.

Definition 8: Contingency contingency

A proposition that is neither a tautology nor a contradiction is known as
a contingency.

Example 2:

Problem: Is the compound proposition q ∧ (p ∨ q) a tautology, a contra-
diction, or a contingency?

Solution: It’s a contingency, as Table 2 shows. The column of boolean
values beneath the proposition includes both true and false, which makes
q ∧ (p ∨ q) a contingency.

Truth tables are excellent tools for categorizing propositions, because they
show all possible evaluations. Tautologies and contradictions can also be de-
termined by applications of logical equivalences; keep reading!

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

8 CHAPTER 1. LOGIC

1.3.2 Conjunction

Consider this English sentence:

Amit bought a tablet and installed a chess app.

This sentence contains two separate propositions (Amit bought a tablet and
[he] installed a chess app). We know that these are propositions because they
are either true or false — Amit either bought a tablet or he did not, and he did
or did not install a chess app. The ‘and’ between them makes the complete
sentence a conjunction,conjunction (p∧ q, LATEX: \land) which is the type of compound
proposition that is true only when both participating propositions are true.
The truth table for conjunction can be found in Table 3, along with those of
the other common connectives.

Table 3: Truth Tables of the Common Logical Connectives

inclusive exclusive
negation conjunction disjunction disjunction implication biimplication

p q ¬q p ∧ q p ∨ q p⊕ q p→ q p↔ q

T T F T T F T T
T F T F T T F F
F T - F T T T F
F F - F F F T T

Turning an English sentence into the logical notation shown in Table 3 is a
four-step process: (1) Identify the simple propositions, (2) assign proposition
labels to them, (3) identify the logical operators, and (4) make all of the
substitutions. Example 3 demonstrates this process.

Example 3:

Problem: Convert to logical notation this sentence: Bobby found, bought,
and wrapped the present.

Solution: As with the first example, this sentence is missing some parts.
As English speakers, we are used to this, and can insert the missing
parts if necessary. We will do that here to make the conversion steps

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

1.3. LOGICAL CONNECTIVES 9

plain: Bobby found the present and Bobby bought the present and Bobby
wrapped the present. This is awkward but correctly-structured English.

Step 1: Identify the simple propositions. Having expanded the original
sentence, the three simple propositions are easy to see: Bobby found the
present, Bobby bought the present, and Bobby wrapped the present.

Step 2: Assign proposition labels. To select meaningful labels, look at
the subjects, verb, and objects of the propositions. Here, the subjects
and objects (‘Bobby’ and ‘present’) are the same in all three, but the
verbs all start with different letters, making our label choices easy:

f : Bobby found the present
b : Bobby bought the present
w : Bobby wrapped the present

Step 3: Identify the logical operators. This step is not much of a challenge,
as we have covered only one: conjunction. With three simple proposi-
tions, we need two conjunctions to tie them together, and we have them.

Step 4: Make all of the substitutions. Replacing the English proposi-
tions with our labels and using ‘∧’ for ‘and’ produces the answer.

The logical notation version of Bobby found, bought, and wrapped the
present is f ∧ b ∧ w, using the labels defined above.

1.3.3 Inclusive and Exclusive Disjunction

Consider this compound proposition:

He won the game by defeating the boss or by collecting all of the relics.

What are the circumstances under which this claim could be true? If he
defeated the boss, but missed a relic, we would consider this to be true, because
the connective (‘or’) allows for either one to be true. Similarly, if he found all
of the relics but let the boss win, the claim is still true because, again, one part
of it is true. If neither action took place, we would consider the statement to
be false – there were two ways to win, and he didn’t achieve either of them.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

10 CHAPTER 1. LOGIC

That leaves one option: What if both parts are true? If the ‘or’ is an
inclusive disjunction,inclusive disjunction (p∨ q, LATEX: \lor) then yes, we consider the claim to
be true. But if the ‘or’ is an exclusive disjunction,exclusive disjunction , (p⊕q, LATEX: \oplus) the
claim is considered to be false. The names provide an easy way to remember
this distinction: inclusive disjunction includes the case where both parts are
true, but exclusive disjunction excludes that case. Table 3 shows that this is
the only difference between these two types of disjunction.

Unfortunately, in English the ‘or’ by itself does not tell the reader which in-
terpretation is correct. Sometimes, we can tell by context. In other situations,
adding a few extra words makes the difference.

Example 4:

Adding “or both” to the end of a disjunction tells the reader to assume
inclusive disjunction: You can type your ID number or your full name,
or both. Similarly, “but not both” means that exclusive disjunction is in-
tended. Prefixing the statement with “either” gives a hint of exclusivity,
but still leaves the reader in some doubt: Either rake the yard this after-
noon or this evening. Can the raker do half of the yard in the afternoon
and the other half in the evening? Even with the addition of ‘either’, it’s
hard to tell. Ah, the joys of natural language! Sometimes, we have to
ask for additional clarification to get the meaning correct.

Example 5:

Problem: Determine the types of disjunction used in each of these sen-
tences:

(a) Ramone or Elias scored the winning hockey goal.
(b) Fill in the circles with pen or pencil.
(c) The meal includes mashed or french-fried potatoes.

Solution: (a) is exclusive; the scorekeeper must credit the goal to just
one player. (b) is inclusive; as the type of mark does not matter, a com-
bination is acceptable. (c) is likely intended to be exclusive, though it is
possible the waiter could arrange for you to receive some of each variety.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

1.3. LOGICAL CONNECTIVES 11

Example 6:

Problem: Why is Wei late? Express the answer Wei overslept or missed
the 8 a.m. bus in logic.7

Solution: Using the four-step process given above (see page 8 and demon-
strated in Example 3):

1. The simple propositions are Wei overslept and Wei missed the 8
a.m. bus.

2. o: Wei overslept m: Wei missed the 8 a.m. bus

3. It’s possible that Wei was late for both reasons, making inclusive
OR the best disjunction option here.

4. In logic: o ∨m.

This is a good time for a word to the wise: Do not ‘over-think’ the mean-
ings of propositions, especially not in this book! When people learn about
converting from English to logic, they sometimes let their imaginations get
the best of them, and start inventing interpretations that lead to indecision
and ultimately an indefensible answer.

Example 7:

Problem: True or False: The sky is blue with one bright light source or
black with lots of them.

‘Solution’ : “Hmmmm. Sounds like an exclusive ‘or’; it is either day-
light (blue sky) or night (black). But there are two transition periods,
with the sky moving between blue and black. Then again, at different
places on Earth, the sky can be blue and black at the same time, which is
inclusive. And is the moon a light source? Sure, it only reflects sunlight,
but it does reflect it well enough to be seen when the sky is blue, so that

7Might as well; Wei’s not here yet, so you’ve got time to kill.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

12 CHAPTER 1. LOGIC

Figure 1.2: “Need to type up your discrete structures homeworks? Feel free to
use any typeface, point size, and symbols you wish . . . so long as this keyboard8

has ’em.” Credit: Wikimedia Commons

could be a second light source. Wait – if we were on the moon, the sky
is always black; it cannot be blue at all! And what about alien planets
with sulphuric atmospheres, perpetual clouds and two suns? Boy, what
a stupid question . . . I’ll just say ‘Yes’.”

Solution: An answer of ‘Yes’ is unacceptable when the question asks for
‘true’ or ‘false’! Go with the most straight-forward interpretation: True,
by exclusive ‘or’. We are not trying to trick anyone with our questions.

1.3.4 Negation

As shown in Table 3, negation takes just one operand, making its truth ta-
ble half the size of the others. It is a unary connective,unary connective unlike conjunction
and disjunction, which take two operands and are therefore termed binary
connectives.binary connective

Over time, several different notations for negation have been used. In
the days of typewriters, the set of available symbols was quite limited (see
Figure 1.2), and as a result most of them had multiple meanings. Combine
that with the limits on the exchange of ideas, and it is not hard to see how
variety would flourish. In the case of negation, the modern notations are the

8This is a picture of an old European QWERTZ typewriter keyboard. Yes; QWERTZ,
not QWERTY. Seriously!

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

1.3. LOGICAL CONNECTIVES 13

negation symbol (¬p, LATEX: \neg) and the overline or overbar (p, LATEX
: \overline{}). Older negation notations that are still used occasionally
include ∼p and p′ .9

Example 8:

Problem: Use a truth table to show that (p ∨ q) ∨ p is a tautology.

Solution: Recall that a tautology always evaluates to true. We can use a
truth table to show that, regardless of the combinations of true and false
that are assigned to p and q, the evaluation of that expression will be
true.

p q p ∨ q p (p ∨ q) ∨ p
T T T F T
T F T F T
F T T T T
F F F T T

Occasionally, students go a little crazy when they negate propositions.
Example 9 demonstrates both right and wrong ways to do it, and Example 10
shows that not all propositions have easily-constructed negations.

Example 9:

Problem: Let m label the proposition The mountain is tall. In English,
express m.

Correct Solution: The mountain is not tall. The safest way to express
the opposite of ‘tall’ is by saying ‘not tall’.

A Probably Acceptable Solution: The mountain is short. ‘Short’ is usually
considered to be an antonym of ‘tall’, making this an acceptable nega-
tion in most situations. Trouble occurs when you start asking annoying
questions such as, “What about ordinary, average-height mountains?”

9∼ is called a tilde (LATEX: \sim)

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

14 CHAPTER 1. LOGIC

Incorrect Solution: The valley is tall. The characteristic of mountains
known as ‘height’ is what we need to negate. Changing the subject does
not address the problem.

Another Incorrect Solution: The mountain was tall. Changing the verb
tense does not address the problem, either.

Example 10:

Problem: Negate the proposition Education funding has decreased and
test scores are down.

Solution: Let p represent the first simple proposition and q the second.
We know that the truth table of p∧q reads T, F, F, F from top to bottom
(see Table 1 if you need to refresh). The negation [¬(p ∧ q)] needs to
evaluate to F, T, T, T to be a complete negation.

If we try Education funding has increased and test scores are up as the
negation, we have two problems. First, is ‘increased’ the negation of ‘de-
creased’? How does ‘staying the same’ fit in? (The same can be said for
‘up’ and ‘down’.) We will take our earlier advice and not overthink these.
Second, the truth table column for this version [¬p ∧ ¬q] is F, F, F, T
instead of the needed F, T, T, T.

As we will learn in Section 1.5.2, a pair of logical equivalences known
as De Morgan’s Laws tell us that the correct negation (still ignoring the
annoying ‘stay the same’ possibility) is: Education funding has increased
or test scores are up [¬p ∨ ¬q].

A classic way to express negation in English is to prefix the statement with
“It is not the case that”. If we try that on the proposition from Example 10,
we produce: It is not the case that education funding has decreased and test
scores are down, but what is being negated is not clear. Are we negating
just the first simple proposition or the entire compound proposition? Natural
languages are notoriously imprecise.

Something else to remember: It is very easy to overlook an overbar, par-
ticularly one that covers an entire compound proposition. Be sure to watch
for them!

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

1.3. LOGICAL CONNECTIVES 15

1.3.5 A Digression: Well-Formed Formulae

It is likely that you have typed a mathematical expression into an assign-
ment statement of a program, attempted to compile it, and had the compiler
complain that your expression is malformed. Chances are, the compiler com-
plained because your expression was not a correctly structured. A well-formed
formula well-formed formula(frequently abbreviated ‘wff ’) is a grammatically-correct expression
of the intended language. Most often, the term is used in mathematics, logic,
and programming, but it applies to any language usage, even the construction
of English sentences.

Example 11:

Consider this assignment statement, which follows the syntax of a variety
of programming languages:

result = 8 + * 9;

8 + * 9 is not a well-formed formula.10 Multiplication of integers is a
binary operation, and in a language that uses infix notation (that is,
nearly all of them), the proper form is operand * operand. The 9 is the
second operand of the multiplication operator, but the first is missing.

Compound logical propositions are statements of a language, just as arith-
metic expressions are. Fortunately, the grammatical rules of the language of
logic are much the same as those of arithmetic and algebra. Briefly, assuming
that p and q are propositions, then based on the logical operators we’ve seen
so far:

1. If p and q are propositions, then they are wffs.

2. If r and s are wffs, then so are (r), ¬r, r ∧ s, r ∨ s, and r ⊕ s.

10However, foo = 8 * + 9; is usually considered to be well-formed. If you don’t see
why, put it into a program and look at the value assigned to foo.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

16 CHAPTER 1. LOGIC

Example 12:

Problem: Show that t⊕ u is a wff in logic, given that t and u are propo-
sitions.

Solution: By (1), above, t and u are wffs. By (2), t ⊕ u is a wff. And,
also by (2), so is t⊕ u.

Example 12’s demonstration shows the foundation of the process used
by programming language compilers to check that a program is a correct
expression of that language.

1.3.6 Implication (a.k.a. Conditional Proposition)

Programming languages provide selection statements that allow computers to
execute one or more commands based on the evaluation of a condition. In most
languages, the form is something like if <condition> <action(s)>, which
mimics one of the forms conditionals take in English. The interpretation is
much like the English version as well: The action(s) are performed only when
the condition is true, and ignored when it is false.

Take this English sentence:11

If you start the car, then the engine will run.

We can convert this compound proposition to logic as we did with our
previous examples. Here we again have two (simple) propositions (s: you start
the car and e: the engine will run). The symbol for implicationimplication is a right-
pointing arrow (s → e, LATEX: \to). Rewriting this is easy; understanding
how to interpret the logic is harder.

Assume that both s and e are true; that is, you do start the car, and as
a result the engine does run. You would accept that s → e is true. Now
consider that the engine does not run (e is false) even though you started
the car. You would have no trouble accepting that the sentence is false. But
how do we interpret the truth of the statement when s is false? Certainly, we
do not expect the engine to spring to life all by itself.12 More to the point,
is the entire if you start the car, then the engine will run statement a true
statement when we do not have a chance to see it in action? The answer

11. . . please! (en.wikipedia.org/wiki/Henny_Youngman)
12Outside of cartoons and horror movies, that is.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

1.3. LOGICAL CONNECTIVES 17

is, perhaps surprisingly, ‘yes’! We have no justification for saying that the
statement is false, so we accept that it is true. This assumption of truth is
known as vacuous truth.

Definition 9: Vacuous Truth vacuous truth

Given a statement that can be expressed as an implication p → q, the
statement is vacuously true when p is false.

In English, ‘vacuous’ is synonymous with ‘empty,’ explaining why vacuous
truths are sometimes known as empty truths.

Example 13:

Question: Is the statement “If Godzilla is an astronaut, he is wearing
blue ear plugs” vacuously true?

Answer: Godzilla is a fictional monster. As such, the set of astronaut
Godzillas is empty. Because “Godzilla is an astronaut” is false, and be-
cause F→ anything is true, yes, the statement is vacuously true.

You could just memorize the implication truth table (which can be found
in Table 3), but looking at if statements in programming languages provides
another perspective on this interpretation. When you write a program and
the computer translates it (to machine language or bytecode or whatever),
the translator verifies that the structure of the code meets the specifications
of the language. That is, your if statement is deemed to be ‘correct’ or ‘true’,
even though you have yet to execute the program. Similarly, in English, you
can check that the sentence syntax is correct without knowing the meaning of
all of the words in it, so long as you know their roles (noun, verb, etc.).

The ‘if’ part and the ‘then’ part of implications go by a variety of pairs of
names, as shown in Table 4:

Table 4: Names of p and q in “if p, then q”

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

18 CHAPTER 1. LOGIC

p — q

(a) hypothesis — conclusion
(b) antecedent — consequent
(c) sufficient — necessary

Avoid the temptation to “mix and match” the terms in Table 4. That is,
do not pair ‘sufficient’ with ‘consequent’, or people might wonder about your
education.

English, being a language with much flexibility, supports many ways of
writing “if p, then q”. Table 5 covers nineteen (including the ‘when’ and
‘whenever’ substitutions), but even so it is by no means an exhaustive list.

Table 5: Some Other Ways of Saying “if p, then q”

(a) if p, q
(b) p implies q
(c) p infers q
(d) p only if q
(e) p is sufficient for q

(f) q if p
(g) q is implied by p
(h) q follows from p
(i) q unless p
(j) q is necessary for p

NOTE: You can replace the word if with when or whenever without
changing the logical interpretation.

Example 14:

Problem: Express (o ∧ c) → a in conversational English using the q is
sufficient for p form, given that:

o: Wei oversleeps
c: Wei catches the 8 a.m. bus
a: Wei attends the meeting

Solution: The negation ofWei oversleeps isWei does not oversleep. Drop-
ping the rest of the propositions in place, adding the operators, using the
requested form, and making tweaks to the English to make it read (rea-
sonably) conversationally, we get: Wei not oversleeping and catching the
8 a.m. bus is sufficient for him to attend the meeting.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

1.3. LOGICAL CONNECTIVES 19

Let’s face it: It’s really hard to make sentences that use is sufficient
for and is necessary for beautifully conversational!

Example 15:

Problem: Rewrite each of these English expressions of implication in “if
antecedent then consequent” form:

(a) You’ll hurt your back if you lift that box.
(b) The light comes on only if the circuit is not open.
(c) An installed battery is necessary for the remote control to work.

Solution: Part (a) is straight-forward; it matches the “consequent if an-
tecedent” form. In if-then form: If you lift that box, then you’ll hurt your
back.

Part (b) is a bit more complex. There are four forms in Table 5 that
include the word “if”. In just one of those does the hypothesis not im-
mediately follow the “if”, and that is the “only if” case. Be mindful of
that word “only”! With that in mind, the hypothesis and conclusion are
already in the proper orientation for an if-then: If the light comes on,
then the circuit is not open. Notice that the “not” just stays where it is;
compound propositions can serve as hypotheses and conclusions, too.

Part (c) demonstrates that just because you can use a particular form
does not mean that you should. Outside of nerdy sitcoms and logic
classes, very few people talk like that (that is, the form is not very con-
versational). Happily, we can convert it to something more reasonable:
If the remote control works, then a battery is installed. Do not worry
about matching verb tense and word arrangements within the compo-
nent propositions, so long as the result has the same basic meaning and
is correctly-structured English.

“Only if” sentences, such as part (b) of Example 15, often raise a question:
What is wrong with putting the pieces in the other order? In this case, that
would produce the sentence if the circuit is closed, then the light comes on,
which sounds pretty reasonable. But is anything else needed for the light to

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

20 CHAPTER 1. LOGIC

come on? Sure; for starters, the filament (or LED or . . .) must not be broken
and the power source must supply adequate power. That is, the circuit being
closed is not sufficient by itself for the light to come on. The given answer (if
the light comes on, then the circuit is closed) is logical; given that the light
came on, we can reasonably conclude that the circuit was closed.

People sometimes play on the flawed understanding some people have of
conditionals to influence their opinions. The practice of “push” polling in
politics is a classic example.

Example 16:

Ahead of the 2000 U.S. presidential primary in South Carolina, a tele-
phone poll (apparently authorized by the George W. Bush campaign
team) asked this question: Would you be more likely or less likely to
vote for John McCain for president if you knew he had fathered an il-
legitimate black child? The poll was designed to suggest to ill-informed
voters that McCain’s adopted Bangladeshi daughter, Bridget, was bio-
logically his. Notice the ‘if’ in the question. There is no claim that such
an act occurred, but listener susceptible to suggestion could be left with
that impression. You know better: First, you know that the truth of a
conditional depends on the true of the antecedent, and second, you know
that questions are not propositions.

This survey technique is known as “push” polling because it attempts
to sway (‘push’) the listener to a particular point of view. Signatories
of the American Association of Political Consultant’s Code of Ethics are
prohibited from using “false or misleading attacks”.

Converse, Inverse, and Contrapositive

Three adjustments to the basic p → q implication have enough utility to be
worth special mention.

• The converseconverse of p → q is the implication q → p. To form the converse,
just swap the hypothesis and the conclusion.

• The inverseinverse of p → q is the same implication with both the antecedent
and the consequent negated. That is, the inverse of p→ q is p→ q.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

1.3. LOGICAL CONNECTIVES 21

• Finally, the contrapositive contrapositiveis the original implication with both con-
verse and inverse applied to it – the hypothesis and conclusion are each
negated and swap positions. Symbolically, the contrapositive of p → q
is q → p.

Many people find inverse and converse to be hard to keep straight. Here
is a mental trick that might help: Inverse includes negation. Because con-
trapositive includes both adjustments, it is easy to distinguish from the other
two.

Why are these worth knowing? Apart from jokes about athletic footwear,
archaic ways of describing mating, and bad puns,13 they are useful examples
when discussing logical equivalence, as we will see in Examples 24 and 32.

1.3.7 Biimplication (a.k.a. Biconditional Proposition)

Does this sentence sound pretentious to you?

I will eat truffles if and only if they are in a French wine reduction.

The topic certainly raises the pretentiousness level, but what about that “if
and only if” part? Why not just say “if” once instead of reiterating it?

The answer is that “if and only if” actually is not repeating the “if”.
Rather, it is meant to be taken literally: It is a combination of the “if” and
the “only if” expressions of implication. We can see the logical interpretation
by breaking down the example. Assume that t labels I will eat truffles and w
labels [the truffles] are in a French wine reduction.

if and only if
t if w t only if w ← as separate propositions

if w, then t if t, then w ← in if-then form
(w → t) ∧ (t→ w) ← converted to logic notation

Now the meaning is (hopefully!) clear: “if and only if” combines two im-
plications into one statement, providing a compact way of writing this form of
compound proposition. It may sound pretentious, but it is really just a short-
cut.14 This logical operator is known as a biconditional biconditionalor a biimplication,

13Converse is an athletic apparel company, and a rarely-used word to describe sex. (“No
worries, Mom; we . . . conversed last night, that’s all. It was logic homework, I swear!”) As
for puns, how about “A negative poet writes inverse”?

14Now you can be pretentious, educated, and lazy all at the same time!

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

22 CHAPTER 1. LOGIC

biimplication and is represented with the symbol ↔ (LATEX: \leftrightarrow). Another
way of writing if and only if in English is with the abbreviation iff,15 which
you may have seen in other mathematics classes because that is where it is
most often used.16

Table 3 (all the way back on page 8) shows that biimplication is true only
when the operands match (sometimes stated as “have the same parity”). That
is, a biconditional is true when its arguments are both true or when they are
both false. Remember that you do not have to rely on your memory of this
fact; if need be, you can reconstruct the above derivation and then create the
truth table for (p→ q) ∧ (q → p).

People frequently use a conditional expression when a biconditional would
correctly give more useful information, as Example 17 demonstrates.

Example 17:

Problem: Which is more helpful: x = 2y if y = x/2, or x = 2y iff y = x/2,
when x and y are integers?

Solution: First, both are correct; you can safely state either one. The
difference is that the first version is just half of the second; that is, the
second includes the first, and adds if x = 2y, then y = x/2. As both
parts are correct over the integers, the second version provides more in-
formation and it therefore more helpful.

1.3.8 Precedence and Associativity of Logical Connectives

You are likely familiar with the ideas of operator precedence and associativity
from mathematics and the programming languages you have learned. Prece-
denceprecedence tells us which of a group of operators to perform first in an expression
when no parentheses are provided, and associativityassociativity provides an evaluation
order when the operators have the same precedence.

Most discrete structures books provide a precedence table for the logical
operators. They agree on the rough structure (negation has highest prece-
dence, followed by conjunction and disjunction, with the forms of implication

15Speaking of pretentious: See how the two f’s in ‘iff’ are joined? In typography, that’s
called a ligature. LATEX uses them automatically, but that behavior can be overridden.

16In LATEX , \iff produces the symbol ⇐⇒ instead of ↔. Some people like the double-
line arrows for implication and biimplication. We like the simpler single-line arrows.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

1.3. LOGICAL CONNECTIVES 23

next), but they often disagree on the smaller details (e.g., does conjunction
have higher precedence than disjunction, or are they the same?). Instead of
adding to the confusion, for this book we adopt a simple rule: Use parentheses
to avoid confusion.

Associativity is much less troublesome: All of the binary logical connectives
are left-associative. That is, assuming that � is a left-associative binary logical
connective, when evaluating the expression a � b � c, a � b (the left-most
operator) is evaluated first. To force right-associativity, add parentheses, as
in a � (b � c). Negation is naturally right-associative. Given the expression
¬¬ p, the only way it can be evaluated is to perform the right-most negation
first; if we try to make it left-associative, we would be using a negation operator
as the operand to the other negation operator.

1.3.9 A Digression: Logical Bit-Operators in Programming
Languages

So-called “systems” programming languages (that is, languages that are de-
signed to create programs that interface with hardware more so than with
people) include operators that consider individual bits to be their operands.
Of course, most computers work with memory in larger ‘chunks’ (words) than
individual bits, but these operators still apply to the component bits of those
words.

The C family of programming languages (which includes C++ and Java)
provides several bit-level operators. Due to the fact that bits have just two
possible values (0 and 1, or ‘off’ and ‘on’, or ‘false’ and ‘true’), these operators
include negation, conjunction, and disjunction.17

Table 6 lists and demonstrates four of the logical operators as they appear
in C as bit-level operators, along with two bit-shifting operators as examples
of additional bit-level operators. The right-most column shows most clearly
how the corresponding pairs of bits from the operands are processed by the
binary operators.

Table 6: Logical Bit Operators in C-family Languages

17As we will soon see, implication is a composite operator – we can built it from disjunc-
tion and negation – and so programming languages do not need to provide it as a separate
operator.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

24 CHAPTER 1. LOGIC

Operator Name Example (Dec.) Example (Binary)
∼ Complement ∼ 12 = −13 ∼ 00001100 = 11110011

& AND 12 & 10 = 8
1100

& 1010
1000

| OR 12 | 10 = 14
1100
| 1010
1110

∧ XOR 12 ∧ 10 = 6
1100
∧ 1010

0110
>> Shift Right 33 >> 1 = 16 00100001 >> 1 = 00010000
<< Shift Left 33 << 2 = 132 00100001 << 2 = 10000100

Those of you who have programmed with a C-family language may have
wondered why logical AND, for example, is represented by a pair of am-
persands rather than a just one. Table 6 answers the question: The single-
ampersand version is used for bit-level conjunction, and the double-ampersand
version is used for variable-level conjunction. If you are wondering why
∼ 12 = −13 instead of −12 and how shifting bits can be useful, those topics
are often covered in computer architecture classes.18

Knowledge of bit-wise logical operators is useful in some interesting places.
Example 18 introduces one such situation.

Example 18:

UNIX and UNIX-like operating systems maintain a 9-bit default permis-
sion value (frequently 110 110 110, or 6668) and each process maintains
another bit string called the umask. Together, these bit patterns are used
to give new files created by the process initial access permissions. Here’s
how.

Say that the default permission string is as stated above and the umask
value is 0378 (= 000 011 111 in binary). The result of the bit-wise AND-
ing of the complement (a.k.a. negation) of the umask to the default

18Too much work? Fine; be that way: Computers usually use a representation called
two’s complement for signed integers, and shifting is an efficient way to multiply and divide
by powers of two. You and http://www.wikipedia.com can take it from there.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

http://www.wikipedia.com

1.4. MORE ENGLISH ⇔ LOGIC CONVERSIONS 25

permission string is the permission string assigned to newly-created files.
In this case:

000 011 111 [umask]

111 100 000 [complement of umask]
& 110 110 110 [default permissions]

110 100 000 [the file’s permissions]

rw- r–– ––– [as reported by ls -l]

What does this mean? The new file can be read or written by the
file’s owner, can be read (but not written to) by users with group access,
and is inaccessible to anyone else. Users can adjust their command shell’s
umask. Now you know how to chose a suitable value.

1.4 More English ⇔ Logic Conversions
Remember that we are studying the basics of logic to prepare for proofs.
Statements that we wish to prove correct are sometimes expressed in logic
or mathematical notation for us, but they can also be expressions in natural
languages (like English). Before we can apply logical principles to the state-
ments, we have to convert them to logic to make them easier to work with
and to solidify their meanings. Converting from logic to a natural language is
an equally-important skill. It is good to be able to produce a logical result,
but it is even better to be able to explain the meaning of the result to those
not versed in logical notation.

In section 1.3.2 (see Example 3 in particular), we showed how to convert
from English to logic using a four-step process: (1) Identify the simple propo-
sitions, (2) assign proposition labels to them, (3) identify the logical operators,
and (4) make all of the substitutions. Examples 19 and 20 further demonstrate
the challenges of English to logic conversions.

Example 19:

Problem: Express this sentence in logic notation: He loses the election if
he loses Ohio or Virginia.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

26 CHAPTER 1. LOGIC

Solution: Steps 1 and 2 identify the component (simple) propositions
and label them. When negations are involved, think positively. That is,
state the propositions without negations. (Why? Because negations are
operators, and that’s Step 3.) Following this philosophy, we have three
simple propositions – e: He wins the election, o: He wins Ohio, and v:
He wins Virginia.

Now for the operators: We clearly have an implication (the ‘if’ in the
middle) and a disjunction (the ‘or’ between the states) – but which va-
riety of disjunction is it? Presumably, if the candidate loses both states
he will lose the election by an even wider margin, making inclusive dis-
junction the reasonable choice. Another question: How many negations
do we have, two or three? One applies to e, but is there just one covering
the disjunction of o and v, or is there one negation for each proposition?
We can answer this by expanding the antecedent from he loses Ohio or
Virginia to he loses Ohio or he loses Virginia. Three negations it is.

At last, step 4 produces the final answer: (¬o ∨ ¬v)→ ¬e.

You may be wondering if the ‘one negation vs. two’ issue even matters. It
does, as a truth table would make clear. o ∨ v and o ∨ v differ when o and v
have different values.

Example 20:

Problem: Express this sentence is logic notation: The sum of two odd
integers is also an odd integer.

Solution: This problem is challenging for two reasons: First, it deals
with math, which we have yet to try to express in logic. Second, it is
missing all of our logic keywords! This is the sort of sentence we will see
when we discuss proofs.

To express this sentence in logic, we need to rewrite it so that the propo-
sitions and logical connectives are clear. When working with math, it can
help to add variables. In this example, we can introduce two variables
(i and j will do) to represent the odd integers being added. This means

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

1.4. MORE ENGLISH ⇔ LOGIC CONVERSIONS 27

that our propositions are p: i ∈ Zodd, q: j ∈ Zodd, and r: (i+ j) ∈ Zodd.

Now to connect them. The implicit assumption is that both i and j
are provided to us; given them, we add them and claim that the result
is odd. That is, we are assuming that they are odd integers – if they
are both odd, then their sum is odd. ‘Both’ suggests conjunction, and
the if-then is implication. Thus, we can rewrite the original sentence: If
i and j are odd integers, then i + j is an odd integer. In this form, and
having already identified the propositions and connectives, the conversion
to logic is straight-forward: (p ∧ q)→ r.

You may be wondering if p∧q∧r is an acceptable alternative to (p∧q)→ r
in Example 20. It is not. The sum is a result of a process (here, addition), not
something that is also provided to us. As there is a conclusion to be reached,
implication best fits this situation.

When converting from logic to English, the trick is to make the result con-
versational; that is, to write the English version so that it sounds as though it
were written for a person by a person, rather than by a mechanical conversion
process, while retaining the correct meaning. Example 21 should help make
this distinction clear.

Example 21:

Problem: Express this logical expression in conversational English: i ∧ u,
where i: education funding has increased and u: test scores are up

Solution: You may have noticed that this is a slightly-restructured ver-
sion of Example 10. In particular, notice that there is an overline over
the entire expression. Expressing in conversational English the negations
of i and u is easy if we aren’t too picky, as we have already seen in that
earlier example: i: education funding has decreased and u: test scores are
down.

Expressing the negation of the conjunction is more challenging. The pre-
fix phrase it is not the case that is the lazy (and not very conversational)
solution for expressing a negated proposition. Using that here produces
a difficult-to-interpret English version: It is not the case that education
funding has decreased and test scores are down. Does the prefix apply

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

28 CHAPTER 1. LOGIC

to both parts or just the first part? The lack of a comma ahead of the
‘and’ suggests both, but still leaves doubt. We can create a more clear
version by being a little more creative: That both education funding has
decreased and test scores are down is not true. Adding ‘both’ and moving
the negation to the end makes the meaning more plain – and acceptably
conversational.19

To repeat what Example 10 said: We will see another way to express
this situation when we cover logical equivalences. In the meantime, we
hope you appreciate why we want to express ideas in logic rather than in
English. Natural languages are not famous for their precision.

Example 22:

Problem: Express this logical expression in conversational English: (p ∧
q)→ r, where p: i ∈ Zodd, q: j ∈ Zodd and r: (i+ j) ∈ Zodd.

Solution: Yes, this is just Example 20 in reverse. We are not merely
lazy; we are also doing this to make a point.

Translating the logic directly to English is possible but produces a re-
sult that is unsatisfying: If i is an odd integer and j is an odd integer,
then i + j is an odd integer. It is difficult to complain about the cor-
rectness of the English version, but we can make it less awkward – more
conversational – by reducing the repetition: If i and j are both odd in-
tegers, then i + j is also odd. And, for those who feel that a sentence is
not English if it contains variables and math expressions, we can use the
version that started Example 20: The sum of two odd integers is also an
odd integer.

What was our point? We have two, actually: First, converting directly to
English is likely to be unsatisfactory if your goal is conversationality, and sec-
ond, there are different levels of informal expression – what one person feels is

19Want it to be more conversational? Imagine a political candidate’s debate: “My
knuckle-dragging, loose-jawed and lightly-educated opponent’s claim that both education
funding has decreased and test scores are down has as much truth as Hollywood movie
accounting . . . but fewer mysterious explosions.”

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

1.5. LOGICAL EQUIVALENCE 29

conversational may not be acceptable to another. Unfortunately, distinguish-
ing the two perspectives is likely to be difficult.

1.5 Logical Equivalence

1.5.1 Two Definitions of Logical Equivalence

As there are multiple ways of saying the same thing in English, there are
multiple ways to express logical propositions so that they all produce the
same column in a truth table. This idea is the core of our first definition of
logical equivalence.

Definition 10: Logical Equivalence logical equivalence

Two propositions p and q are logically equivalent (written p ≡ q, LATEX:
\equiv) when both evaluate to the same result when presented with the
same input.

Example 23:

Back in section 1.3.1, we used a truth table in Table 2, but only for
labeling its sections. Here is the unadorned table:

p q p ∨ q q ∧ (p ∨ q)
T T T T
T F T F
F T T T
F F F F

You may not have noticed at the time, but the columns for q and
q ∧ (p ∨ q) are identical. As the truth table covers all possible inputs
to these two propositions, and as their evaluations match on all of those
inputs, q ≡ q ∧ (p ∨ q).

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

30 CHAPTER 1. LOGIC

Example 24:

Problem: Show that r → s ≡ ¬s → ¬r and that the converse of r → s
is equivalent to its inverse.

Solution: A single truth table can that show both of these claims are,
perhaps surprising, correct:

(Original) (Converse) (Inverse) (Contrapositive)
r s r → s s→ r ¬r → ¬s ¬s→ ¬r
T T T T T T
T F F T T F
F T T F F T
F F T T T T

It’s important to remember that, while the inverse and the converse
are equivalent to each other, neither is equivalent to the original implica-
tion. Only the contrapositive is equivalent to the original.

This is a good time to clear up a common point of confusion: In logic,
equality is not the same as equivalence. q and q ∧ (p ∨ q) are equivalent, as
Example 23 shows, but they are not equal because they are different expres-
sions (one is a simple proposition and the other is compound). Later, we
will further distinguish equality and equivalence by introducing the idea of
equivalence relations.

You may be tempted to use this to argue that, in algebra, “a+b” and “b+a”
should be equivalent but not equal. Restate this is logic (that is, change “+”
to “∧” and the domain from real to boolean) and we would agree with you.
Logic and algebra share common characteristics (such as commutativity), but
they are not the same field of study.

Example 25:

As a computer programmer, no doubt you have found yourself, probably
very late at night, seemingly unable to construct a condition for an if
statement that will make your program run correctly. The more desper-
ate you became, the wilder your modifications became. Eventually, you
stumbled on a condition that worked, and you never looked at that code

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

1.5. LOGICAL EQUIVALENCE 31

again.

If you had, you might have discovered a really good logical equivalence
example! Imagine that this pseudocode if statement holds your hard-
found condition:

if (temp > tmp or tmp2 = temp) and tmp < temp then ...

(You really need to start using more meaningful variable names, by the
way.) This compound proposition – yes, that’s what it is – includes the
same condition twice; tmp < temp is the same as temp > tmp. With the
application of commutativity on both the and and or, this turns out to
be . . . the proposition q∧ (p∨q) from Example 23! Because that is known
to be equivalent to just q, we could replace the original if statement with:

if tmp < temp then ...

and make our code both more efficient (fewer operators to evaluate) and
easier to understand (especially with better variable names).

True, back when we defined propositions (section 1.2), we said that ex-
pressions with variables were not acceptable because we did not know what
the variables represented. In a correctly-structured computer program, when
a condition is evaluated, the variables all have values. If we imagine replacing
the variables with their values, it is easy to see why a condition in a program
is actually a proposition.

Recall that biimplication is true only when the operands have the same
value. (Or, refresh your memory with a look back at Table 3.) This fact leads
to an alternative definition of logical equivalence.

Definition 11: Logical Equivalence logical equivalence

Propositions p and q are logically equivalent (written p ≡ q, LATEX :
\equiv) if p↔ q is a tautology.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

32 CHAPTER 1. LOGIC

Example 26:

Here is the truth table from Example 23, augmented with an additional
column:

p q p ∨ q q ∧ (p ∨ q) q ↔ [q ∧ (p ∨ q)]
T T T T T
T F T F T
F T T T T
F F F F T

Because q ≡ q ∧ (p ∨ q), their results will always match, their
biimplication will always be true, and thus it is a tautology.

1.5.2 Common Logical Equivalences

An infinite number of logical equivalences can be created. A few dozen of
those turn out to be particularly useful in problem-solving. Listed below is
our collection, grouped in tables based on the logical connectives they use.
Names are provided for many but not all. Be aware that other resources may
use alternate names (for example, the Negation Laws are sometimes known as
the Law of Contradiction and the Law of the Excluded Middle, respectively).

Table 7: Some Logical Equivalences using AND (∧) and OR (∨)

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

1.5. LOGICAL EQUIVALENCE 33

(a) p ∧ p ≡ p Idempotent Laws
p ∨ p ≡ p

(b) p ∧ F ≡ F Domination Laws
p ∨T ≡ T

(c) p ∧T ≡ p Identity Laws
p ∨ F ≡ p

(d) p ∧ q ≡ q ∧ p Commutative Laws
p ∨ q ≡ q ∨ p

(e) (p ∧ q) ∧ r ≡ p ∧ (q ∧ r) Associative Laws
(p ∨ q) ∨ r ≡ p ∨ (q ∨ r)

(f) p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r) Distributive Laws
p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

(g) p ∧ (p ∨ q) ≡ p Absorption Laws
p ∨ (p ∧ q) ≡ p

Table 8: Some More Logical Equivalences (adding ¬)

(a) ¬(¬p) ≡ p Double Negation
(b) p ∧ ¬p ≡ F Negation Laws

p ∨ ¬p ≡ T
(c) ¬(p ∧ q) ≡ ¬p ∨ ¬q De Morgan’s Laws

¬(p ∨ q) ≡ ¬p ∧ ¬q

Table 9: Some More Logical Equivalences (adding →)

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

34 CHAPTER 1. LOGIC

(a) p→ q ≡ ¬p ∨ q Law of Implication
(b) p→ q ≡ ¬q → ¬p Law of the Contrapositive
(c) p ≡ T→ p “Law of the True Antecedent”
(d) ¬p ≡ p→ F “Law of the False Consequent”
(e) p→ p ≡ T Self-implication (a.k.a. Reflexivity)
(f) p→ q ≡ (p ∧ ¬q)→ F Reductio Ad Absurdum
(g) ¬p→ q ≡ p ∨ q
(h) ¬(p→ q) ≡ p ∧ ¬q
(i) ¬(p→ ¬q) ≡ p ∧ q
(j) (p→ q) ∨ (q → p) ≡ T Totality
(k) (p ∧ q)→ r ≡ p→ (q → r) Exportation Law (a.k.a. Currying)
(l) (p ∧ q)→ r ≡ (p→ r) ∨ (q → r)
(m) (p ∨ q)→ r ≡ (p→ r) ∧ (q → r)
(n) p→ (q ∧ r) ≡ (p→ q) ∧ (p→ r)
(o) p→ (q ∨ r) ≡ (p→ q) ∨ (p→ r)
(p) p→ (q → r) ≡ q → (p→ r) Commutativity of Antecedents

Table 10: Some More Logical Equivalences (adding ⊕ and ↔)

(a) p↔ q ≡ (p→ q) ∧ (q → p) Definition of Biimplication
(b) p↔ q ≡ (p ∧ q) ∨ (¬p ∧ ¬q)
(c) p↔ q ≡ ¬p↔ ¬q
(d) p⊕ q ≡ (p ∧ ¬q) ∨ (¬p ∧ q) Definition of Exclusive Or
(e) p⊕ q ≡ ¬(p↔ q)
(f) p⊕ q ≡ p↔ ¬q ≡ ¬p↔ q

1.5.3 Applications of Logical Equivalences

Having a few dozen logical equivalences is nice, but what can we do with
them? In a later chapter we will see how they help with arguments, but
for now we can use them to verify additional equivalences, tautologies, and
contradictions.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

1.5. LOGICAL EQUIVALENCE 35

Example 27:

Problem: Using a truth table, demonstrate that p→ (q∨p) is a tautology.

Solution: We are doing this as a reminder: You don’t need to use logical
equivalences to demonstrate these relationships.

p q [p] q ∨ p p→ (q ∨ p)
T T [T] T T
T F [T] T T
F T [F] T T
F F [F] F T

As p→ (q∨p) evaluates to true for all possible combinations of values
of p and q, it is a tautology.

We copied over the p column so that the q and p columns are in the same
order as those operands are in q∨p. This isn’t a necessary step, especially not
for operators like ∨ that are commutative, but we think that it is a good habit
to acquire. Many people have a hard time accurately re-ordering operands of
implication (which is not commutative) in their heads.

Note that you can say that the truth table shows that p → (q ∨ p) is
equivalent to true (that is, p → (q ∨ p) ≡ T). That is a symbolic way of
saying that the expression is a tautology.

Let us repeat that example, but this time we will apply logical equivalences.

Example 28:

Problem: Using a sequence of logical equivalences, demonstrate that
p→ (q ∨ p) is a tautology.

Solution: The statement of the problem tells us where we need to go:
We need to show that the proposition is equivalent to true. Can we find
a known equivalence that both matches the form of p→ (q∨p) and seems
a likely route to our desired answer? Yes! Table 9, line n, has the same
form. True, it uses p, q, and r, but as these are just place-holders for
propositions, we can substitute p for r. After applying that equivalence,

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

36 CHAPTER 1. LOGIC

the next two steps are straight-forward.

p→ (q ∨ p) ≡ (p→ q) ∨ (p→ p) [Table 9(n)]
≡ (p→ q) ∨T [Self-Implication]
≡ T [Domination]

Because p→ (q ∨ p) is equivalent to true, it is a tautology.

Justifying each equivalence in the sequence is essential if the reader is
to trust that the demonstration is correct. Writing one equivalence per line
gives space to the right to either direct the reader to one of the tables on
pages 33–34, or by giving its name (if it has one).

Frequently, there are other ways to string together equivalences to reach
the same conclusion. Example 29 repeats Example 28 but chooses a different
starting equivalence.

Example 29:

Problem: Using a sequence of logical equivalences different from that used
in Example 28, demonstrate that p→ (q ∨ p) is a tautology.

Solution: There are no other given logical equivalences that have the
same form. We have to be more creative. It might be tempting to just
use self-implication directly, but its form (p → p) shows that the same
proposition must appear on both sides of the implication. Instead, we
will start with the Law of Implication (Table 9(a)) and see where that
leads us.

p→ (q ∨ p) ≡ ¬p ∨ (q ∨ p) [Law of Implication]
≡ q ∨ (¬p ∨ p) [Commutativity of ∨]
≡ q ∨T [Negation Law]
≡ T [Domination]

Once again, as p→ (q ∨ p) is equivalent to true, it is a tautology.

The second step is actually more than just one step. We remove the
parentheses, which is acceptable because ∨ is associative. Next, we swap
(commute) ¬p and q, and we insert parentheses (associativity of ∨ again) just
to highlight the location of our next step. If you do not care for this lack of
complete clarity, you can include a line for each of these steps. However, this

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

1.5. LOGICAL EQUIVALENCE 37

kind of short-cutting is very commonly done, and so you should be prepared
to mentally fill-in these small steps when studying examples.

At the risk of over-doing this problem, we wish to show one more technique
for solving it. This approach is still based on logical equivalences, but considers
the possible values of the operands in turn to reason about the solution. We
call the technique case-based reasoning. case-based reasoning

Example 30:

Problem: Demonstrate that p→ (q∨p) is a tautology by using case-based
reasoning.

Solution: Being a logical proposition, p can be either true or false. We
consider each in turn.

Case 1: Let p be true. Our expression becomes T → (q ∨ T). By
domination, this simplifies to T → T, which is true by the definition
of implication.

Case 2: Let p be false. F → (q ∨ F) reduces to F → q by the iden-
tity laws (Table 7(c)). By the definition of implication, any implication
with false as the antecedent evaluates to true.

Thus, for both possible values of p, the proposition p → (q ∨ p) is true,
demonstrating that it is a tautology.

We will see this type of case-based reasoning again when we study proofs.
Knowledge of logical equivalences can help you make your programs more

readable by other programmers (yes, this is a good thing!).

Example 31:

Problem: Write a condition that evaluates to true when the variable
sensor is outside of the acceptable tolerance range defined by the con-
stants ZERO and OMG. Assume that OMG > ZERO.

Solution: Assuming that a reading of OMG is unacceptable, ‘outside’ means

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

38 CHAPTER 1. LOGIC

that the value is either lower than ZERO or at/above OMG. That is, the sen-
sor reading is not within the acceptable range. We can code that as:

if sensor < ZERO or sensor => OMG then ...

This is perfectly correct, but the code would be better if the condition
could be more easily ‘read’ to mean “not acceptable” by the program-
mers who will be tasked with maintaining your code (and remember, one
of them could well be you!). In logic, we can express that condition as
p ∨ q, with p : sensor < ZERO and q : sensor ≥ OMG. p ∨ q ≡ p ∨ q
by double negation (Table 8(a)). Applying the second De Morgan’s Law
(Table 8(c)) to the inner negation produces p ∧ q. The negation of p is
sensor ≥ ZERO and the negation of q is sensor < OMG. As a program
condition, it looks like . . .

if not (sensor >= ZERO and sensor < OMG) then ...

. . . and is logically equivalent to the first version. Yes, this has one more
operator (the ‘not’) than does the first version, but it is a direct transla-
tion of “not acceptable” into code. Code that ‘reads’ well (“if the measure-
ment is not acceptable, do something!”) is more likely to be understood,
and more likely to be maintained correctly. Give this some thought the
next time you choose a cryptic identifier name (yes, like ‘OMG’) or receive
a CT scan.20

One more example. We have already seen that conversions between En-
glish and logic can be challenging. Example 32 demonstrates how your knowl-
edge of logical equivalences can help make sure your conversion to logic is
correct.

Example 32:

Problem: Express this sentence in logical notation: If he is honest, he
didn’t open his eyes and sneeze.

Solution: Thinking positively, we start by identifying and labeling our

20One of the most famous examples of a software failure of a medical device is the Therac
25 story: http://en.wikipedia.org/wiki/Therac-25

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

http://en.wikipedia.org/wiki/Therac-25

1.5. LOGICAL EQUIVALENCE 39

predicates: h : he is honest, o : he did open his eyes, and s : he did sneeze.
On the surface, the sentence is ambiguous. We don’t know if he didn’t
open his eyes and sneeze should be expressed as o ∧ s (he did not open
his eyes and he did not sneeze, meaning that neither action occurred)
or as o ∧ s (he did not both open his eyes and sneeze, meaning that he
could have done either one separately or neither). Somehow, we have to
choose between h→ (o∧ s) and h→ o ∧ s as our answer. Perhaps logical
equivalences can help us decide between them.

We know that the contrapositive of an implication is equivalent to the
original (see Table 9). Considering our first option, we find that h →
(o ∧ s) ≡ o ∧ s → h ≡ o ∨ s → h ≡ (o ∨ s) → h (by contraposition,
De Morgan’s, and double negation). In conversational English, this could
be written as: If he opened his eyes or sneezed, he’s lying. This version
does not make much sense; disjunction provides two or three options for
truth, making lying unlikely.

Moving to the second option, applying contraposition and double nega-
tion to it shows that h→ o ∧ s ≡ (o ∧ s)→ h. In English: If he opened
his eyes and sneezed, then he is lying. That is a reasonable statement;
you could sneeze with your eyes open, but you’d almost certainly have to
physically hold them open to do so.21

Thanks to logical equivalences, the correct logical interpretation appears
to be h→ o ∧ s.

Remember: Do not overthink conversions between natural languages and
logic! It is easy to ask, “What if he opens his eyes, pauses, and closes them
to sneeze?” Easy, but unjustified. Take the statement as given; don’t waste
time dreaming up embellishments. This material is challenging enough as-is.

21Thank you, Mythbusters! http://dsc.discovery.com/fansites/mythbusters/db/
human-body/sneezing-eyeballs-pop-out.html

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

http://dsc.discovery.com/fansites/mythbusters/db/human-body/sneezing-eyeballs-pop-out.html
http://dsc.discovery.com/fansites/mythbusters/db/human-body/sneezing-eyeballs-pop-out.html

Chapter 2

Quantified Expressions

We learned in Chapter 1 that variables are unwelcome in propositions. Vari-
ables are, however, incredibly useful in math and programming, making their
utility in logic no surprise. In this chapter we add variables (and their associ-
ated baggage) to propositions, as we continue on the trail to proofs.

2.1 Propositions to Predicates

Flashback: We said in Chapter 1 that we “consider variables to be ‘illegal’
within propositions.” That’s because adding variables to a proposition requires
the introduction of several new concepts that explain and bind the variables.
We had enough to talk about as it was.

Without the additional complications, predicates and propositions are very
similar.

Definition 12: Predicate predicate

A statement that includes at least one variable and will evaluate to either
true or false when all variables are assigned values is a predicate (a.k.a.
a propositional function).

As we did with propositions, we will be giving predicates labels for ease of
reference. To help distinguish predicates from propositions, we will use upper-
case letters for predicates. Also, we will follow the predicate label with a list

41

42 CHAPTER 2. QUANTIFIED EXPRESSIONS

of the variables used by the definition of the predicate, much as a program’s
invocation of a subprogram is followed by the parameters of the call.

Example 33:

Here are two examples of basic predicates:

H(t) : (0 ≤ t) ∧ (t < 24)
A(x, y) : x is on the y

The first predicate evaluates to true when the argument is in the range
[0 . . . 23], which are the legal hour values in military (a.k.a. 24-hour) time.
The second example demonstrates a two-variable predicate dealing with
spacial orientation.

Something’s missing from those examples: Declarations of the variables.
Many programming languages require that variables be declared (added to
the code’s scope, assigned a type, etc.) before they are assigned values. Other
languages permit variables to take on such characteristics dynamically during
execution. In logic, we take the first approach: You must state the domain of
a variable when you use it in a predicate.

Definition 13: Domaindomain

The domain (or universe) of a variable is the collection of values from
which its value may be drawn.1

You can think of variables in a program as having domains, too. For
example, in Java a variable declared to be of type int has a domain consisting
of the integers from -2,147,483,648 through 2,147,483,647.

1More formally, the term is domain of discourse or universe of discourse, but who wants
to say or write those?

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

2.1. PROPOSITIONS TO PREDICATES 43

Example 34:

Let’s fix the predicates in Example 33:

H(t) : (0 ≤ t) ∧ (t < 24), t ∈ Z

We could have used R or even Z∗ for t’s domain, but Z is all we re-
ally need – we want to exclude non-integer hours, and the predicate’s
condition already deals with negative values.

A(x, y) : x is on the y, x, y ∈ Furniture

x and y are taken from the same domain in the second example. That’s
not a requirement; they can be from separate domains if that suits your
needs, as in:

A(x, y) : x is on the y, x ∈ Toys, y ∈ Furniture

which allows us to consider the logical values of A(ball, table) and
A(go-kart,piano).

To avoid misunderstandings, here are the rules for domains that we will
follow in this book:

1. Each variable’s domain is stated after the predicate.

2. Domains may be no more than one step more specific than “Things.”

3. Operators may not be concealed within domains.

Like most rules, these have lots of room for loopholes. Example 35 tries
to clear up some of the more common ones.

Example 35:

Consider this predicate:

G(x) : x contains gossip, x ∈ supermarket tabloids

The domain “supermarket tabloid” runs afoul of rules (2) and (3). This

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

44 CHAPTER 2. QUANTIFIED EXPRESSIONS

domain is for a specific kind of publication, which suggests that the do-
main ought to be “magazines” or “periodicals.” Further, it merges the
characteristics of “sold in supermarkets” and “is a tabloid.” As the last
sentence suggests, the merger is best accomplished with AND. We should
be clear about that by creating separate predicates for each of those char-
acteristics:

G(x) : x contains gossip, x ∈ magazines
S(x) : x is sold in supermarkets, x ∈ magazines
T (x) : x is a tabloid, x ∈ magazines

We can combine them with ANDs to recapture the original meaning:
S(x) ∧ T (x) ∧ G(x), x ∈ magazines — a supermarket tabloid that con-
tains gossip.

The quantification examples in sections 2.3 and 2.4 will show the value of
these rules. You may be viewing them as causing extra clutter (“Now we need
multiple predicates instead of just one!”), but that ‘clutter’ helps extract the
meaning that is being expressed by the statement.

2.2 Evaluating Predicates
This may seem straight-forward; if you want to evaluate a predicate, plug in
a value and produce a result. But that’s not the only way to do it.

2.2.1 Evaluating Predicates on Specific Domain Elements

Much as we don’t know the return value of a square root function until we
pass it a value, until we assign the variables of a predicate appropriate values,
we cannot determine its the truth value.

Example 36:

Consider this predicate:

O(x) : x is evenly divisible by 2, x ∈ R

Supplying O() with any multiple of two will make it true: O(8), O(−4),

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

2.2. EVALUATING PREDICATES 45

and O(0) are all true. All other real values cause O() to be false, including
1, 5

7 , and π.

Notice that when we supply values for the variables, we are converting
predicates to propositions. x is evenly divisible by 2 is a fine predicate (espe-
cially with a domain!), but an unacceptable proposition. However, 7 is evenly
divisible by 2 is a proposition, one that happens to be false.

2.2.2 Quantification: Evaluating Predicates on Sets of
Domain Elements

We aren’t restricted to assigning predicate variables individual values to treat
the predicates as propositions. A more general approach that permits us
to express some common situations compactly works by considering certain
subsets of the variables’ domains instead of specific individual values. The
idea is called quantification, quantificationand we will consider two types:

1. Universal Quantification (∀, LATEX: \forall) requires that the entire
domain of values be considered .

2. Existential Quantification (∃, LATEX: \exists) considers one or more
(which could include all) members of the domain.

When applying quantification to a predicate, we will use one type of quan-
tifier or the other (but never both) with each variable of the predicate. We
consider quantified variables to be bound by the quantifier. In some contexts,
it’s possible for some variables not to be quantified; such variables are consid-
ered to be free (a.k.a. unbound). Sorry; none of those contexts appear in this
book. We’ll be quantifying all of our predicates’ variables.

Definition 14: Bound Variable bound variable

A quantified variable within a predicate is a bound variable.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

46 CHAPTER 2. QUANTIFIED EXPRESSIONS

Definition 15: Free Variablefree variable

An unquantified variable within a predicate is a free variable.

Table 11 shows the situations in which quantified expressions are true or
false.

Table 11: Evaluating ∀ and ∃

This expression: is True when: is False when:
∀xP (x), x ∈ D every d ∈ D at least one d ∈ D

makes P () true makes P () false
∃xP (x), x ∈ D at least one d ∈ D every d ∈ D

makes P () true makes P () false

Quantified expressions are used frequently in human languages. For ex-
ample, in English:2

• “Most politicians are slimy weasels”

• “None of those peaches are ripe”

• “Few students like taking discrete math exams”

• “That bag contains at least two pieces of candy”

There are quantifications that cannot be adequately expressed in first-
order logic. For example, how many politicians can be considered to be
“most,” and how many students are there in a “few?” Many quantifications
can be expressed in FOL, although it is sometimes a challenge. In particular,
the second and fourth of those examples can be expressed; we’ll see how before
the end of this chapter.

The next two sections cover ∀ and ∃ in detail. For now, here’s a simple
example that should help distinguish them.

2A joke: “What do you call a person who speaks three languages? Trilingual. What do
you call a person who speaks two languages? Bilingual. What do you call a person who
speaks one language? American.” If you want examples in other languages, you need a
different author!

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

2.3. MORE DETAIL ON UNIVERSAL QUANTIFICATION 47

Example 37:

Let S(x) : x2 < 9, x ∈ Z+.

Are there any members of the set Z+ that make S(x) true? Yes; try
x = 2. S(2) is the proposition “4 < 9”, which is true. Because at least
one member of the domain makes S() true, we can say that ∃xS(x) is
true. To read that aloud, we would say “There exists a value for x such
that S(x) is true.”

In order for ∀xS(x) to be true, all members of the domain must make
S() evaluate to true — no exceptions. Showing this can be a significant
task, one often requiring that formal reasoning techniques be applied.
However, to show that a universally quantified expression is false, all we
need is one domain member that makes S() false. For this predicate,
that’s easy: Any integer above 3 (or under -3) makes S() false. Thus, S()
is not true for all domain elements; the expression ∀xS(x) is false.

Let’s take the example a step further by changing the domain from Z
to {0, 1, 2}. Because every member of this new domain makes x2 < 9
true, ∀xS(x) is now true. Read aloud: “For all x in the domain, S(x) is
true.” ∃xS(x) is also true, because at least one element of the domain
makes S() true. If ∀xS(x) is true, then ∃xS(x) is also true.

2.3 More Detail on Universal Quantification

We already know (from Section 2.2) that ∀xP (x) is true only when all mem-
bers of the domain make P () true. Otherwise, the quantification is false.
Happily (?), universal quantification is more interesting than that.

2.3.1 Identifying Universal Quantification in English

There are some words and phrases in English that can be indications of uni-
versal quantification, including “All,” “For all,” “Every,” and “Any.” Unfor-
tunately, it’s not as simple as doing a text search for these phrases to location
universal quantification.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

48 CHAPTER 2. QUANTIFIED EXPRESSIONS

Example 38:

Here’s a sentence that uses “all” in a non-universal way:

Darling, I will come home with all possible speed!

Unless this person is planning to make the trip an uncountably infinite3

number of times, ‘with all possible speed’ is just a fancy way of saying
‘as soon as possible.’

Example 39:

Sometimes, none of those phrases are used, yet the sentence is still clearly
universal in nature. For instance:

Car doors open outward.

The point: You have to read statements carefully to understand their
intended meaning. You can’t simply learn and follow a tidy set of rules.

2.3.2 Nesting Universal Quantifiers

Recall that it’s possible for a predicate to have more than one variable, as in
L(a, b) : a < b. When working with such predicates, we have to quantify all of
their variables. But what does it mean for an expression to have two universal
quantifiers?

Let’s start with the notation. Authors have a small variety of ways to write
nested quantifiers. We’ll stick with the classic: ∀a∀b L(a, b). Other options
include (∀a)(∀b)L(a, b), ∀a∀b : L(a, b), and ∀a, b L(a, b).

In English, assuming a domain of real numbers for both a and b, we’d
express that nested quantification as “For all pairs of real numbers, the first
is less than the second.” This isn’t true, of course, but that’s OK – we need
to be able to represent both true and false expressions.

3Will be covered in a future chapter. Really!

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

2.3. MORE DETAIL ON UNIVERSAL QUANTIFICATION 49

Example 40:

When we subtract one integer from another (e.g., 4−6), the result is also
an integer. Mathematicians say that Z is closed under subtraction. How
can we express it as a quantified expression?

We need to say that subtracting any integer from any other integer pro-
duces an integer. We don’t want to create an expression that is overly
restrictive. For instance, it’s possible for all three integers to be the same
(0 − 0 = 0). We don’t want to create an expression that excludes such
possibilities.

Consider this attempt: ∀x [(x−x) ∈ Z], x ∈ Z. x represents integers, and
so x − x represents the subtraction of two integers, right? Close: x − x
represents the action of subtracting an integer from itself (as in 19 − 19
or (−4) − (−4)). We need to say that the two integers have no other
connection (besides both being integers). Here’s the expression we need:

∀x∀y [(x− y) ∈ Z], x, y ∈ Z.

Adding y allows the expression to represent the subtraction of two in-
tegers that may or may not be the same integer.

Example 41:

Integers are closed under subtraction, but not under division. 4/3, for
instance, doesn’t produce an integer result.4 Real numbers are closed un-
der division, but we have to be careful to exclude division by 0. How can
we add that exception to the expression? Here’s how:

∀a∀b [(b 6= 0)→ ((a/b) ∈ R)], a, b ∈ R.

This can be read as, “For any real numbers a and b, if b is not zero,
the division of a by b produces a real number,” or, more conversationally,
“Dividing a real by a non-zero real produces a real.” The implication
‘protects’ the division from the case that b = 0, much as we’d use an if
statement in a program for the same purpose.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

50 CHAPTER 2. QUANTIFIED EXPRESSIONS

Example 41 demonstrates the difference between logical English and con-
versational English. If someone looks over your shoulder, sees you writing a
quantified expression, and asks, “What’s that mean?”, you’d want to provide
a conversational answer. In many examples in this chapter, we will provide
both logical and conversational versions, because it’s reasonably easy to create
the former from a quantified expression, but not the latter, at least not with-
out practice. Moving from logic to conversational English via logical English
usually makes the task easier (while cutting down on errors).

If you are still having trouble wrapping your mind around this nested
quantification idea, viewing it from the perspective of nested loops in a pro-
gramming language may help. Consider this nested loop pseudocode example
that returns True only if all nine products are negative:

for i in {1,2,3}:
for j in {-2,-4,-6}:

if (i * j >= 0)
return False

endif
endfor

endfor
return True

The loops are a short-cut that help us avoid having to write nine separate
if statements. They systematically pair every member of the first set (i’s
domain, if you will) with all members of the second set. This is also what
nested quantification represents. Here’s the logical notation version:

∀i∀j (i ∗ j < 0), i ∈ {1, 2, 3}, j ∈ {−2,−4,−6}.

Each quantifier can be thought of as representing a loop that covers the cor-
responding variable’s domain. The condition that we want to establish is the
negation of the code’s condition, because we want the code to stop checking as
soon as we know what the result will be — remember, to show that a universal
quantification is false, all we need is one exception.

4Integers are closed under integer division (4\3), but this example is using real division.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

2.3. MORE DETAIL ON UNIVERSAL QUANTIFICATION 51

2.3.3 An Extended Universal Quantification Example

The next example brings together many of the quantification ideas we have
covered so far.

Example 42:

Problem: Express the sentence “Everyone who reads this book smells
fresh” in logical notation.

Solution: We will (intentionally!) make several errors as we work to-
ward the correct answer to this problem, so that you can avoid making
the same errors yourself.

The first word (“everyone”) suggests that this is a universal quantifi-
cation situation, and thus that we should be using predicates instead of
propositions. But, what are the predicates? It’s tempting to create a
single predicate:

P (x) : x is a fresh-smelling reader of this book, x ∈ People

The problem: There are two ideas covered by that predicate — readers
of this book, and people who smell fresh. They need to be separated.5
Attempt #2:

R(x) : x reads this book, x ∈ People who smell fresh

Nice try, but as we talked about earlier, we want the domain to be no
more than one step removed from “Things.” “People” is a fine domain,
but in isolation. This means that we need a second predicate for fresh-
smellers. Attempt #3:

R(x) : x reads this book, x ∈ People
F (x) : x smells fresh, x ∈ People

Not bad, but R() needs some help. “This book” is pretty vague. We
can tidy this up by making R() into a binary predicate. Attempt #4:

R(x, y) : x reads y, x ∈ People, y ∈ Books

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

52 CHAPTER 2. QUANTIFIED EXPRESSIONS

F (x) : x smells fresh, x ∈ People

That looks good. We have the quantification, we have the predicates,
and when we use R() in our final expression, we’ll use the name of this
book in place of y. One last step: We just need to combine the predicates
with a suitable logical operator. The given sentence combines these two
characteristics, which makes AND seem like a reasonable operator choice:

∀x [R(x, “Discrete Structures for Computer Science”) ∧ F (x)],
x ∈ People

But what does that mean? In English, we would read this as, “Everyone
reads this book and smells fresh.” Everyone? All ∼7 billion of us? That’s
overstepping the meaning of the sentence. We just want to say that those
people who read this book smell fresh. Put another way: If a person reads
this book, they smell fresh. Looks like a job for . . . implication!

∀x [R(x, “Discrete Structures for Computer Science”)→ F (x)],
x ∈ People

In not-very-conversational English: “Considering all people, if a person
reads this book, that person smells fresh.” Stated conversationally: “Ev-
eryone who reads this book smells fresh,” which is exactly what we were
given.

Example 42 showed that implication was the appropriate operator. That
is often the case: In universally-quantified expressions, when you appear to
have a choice between AND and implication, the correct choice is usually
implication.

2.4 More Detail on Existential Quantification

Recall from Section 2.2.2 that existentially quantified expressions are true so
long as a member of the domain makes it true. More than one is fine, but we
need at least one. To make such existential quantifications false, none of the
domain members can make them true.

5No, not because fresh-smelling people want nothing to do with readers of this book . . .

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

2.4. MORE DETAIL ON EXISTENTIAL QUANTIFICATION 53

2.4.1 Identifying Existential Quantification in English

Like universal quantification, there are some key words and phrases in English
that can suggest existential quantification as the appropriate choice. These
include “Some,” “A few,” “More than one,” and “Several.” These words and
phrases could also have nothing to do with quantification, and there are many
other ways to suggest ‘there exists’ — always read the English statement
carefully to understand its intended meaning.

Example 43:

You know, quite a few people need food to survive . . .

“Quite a few” is clearly existential, stopping short of universal. But look-
ing at the complete sentence, universal certainly seems more appropriate,
under the reasonable assumption that all people need food to live. The
tone of the sentence is one of sarcasm, as though the speaker is chiding
another person for an obvious error in reasoning. Such undercurrents of
meaning are a key complication when converting English to logic.

Example 44:

That was some game!

This is the sort of remark one friend might say to another at the end
of a 8-7 (that is, unusually high-scoring) soccer game. “Some” suggests
existential quantification, but after more thought it’s clear that this sen-
tence is devoid of definite content. It’s just not worth trying to express
logically, because we don’t know the information supporting the remark.
We can imagine converting “The total number of goals scored in today’s
game exceeds the 98th percentile for soccer matches” to logic, but it’s
much harder to imagine it being used to break an awkward silence in
casual post-game conversation.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

54 CHAPTER 2. QUANTIFIED EXPRESSIONS

2.4.2 Nesting Existential Quantifiers

Having covered nested universal quantifiers in section 2.3.2, this section should
be easier to follow, because the ideas are much the same. We’ll even use the
same starting example: L(a, b) : a < b, a, b ∈ R. Using nested existential
quantification, we create ∃a∃b L(a, b), a, b ∈ R, which can be expressed in
English as “There exist two real numbers a and b such that a < b,” or more
conversationally as “There are two reals such that the first is less than the
second.” We need just one true example to verify the truth of that expression,
such as 2.15 < 6.736.

Example 45:

Problem: Convert ∃c∃d ¬D(c, d), c ∈ Plants, d ∈ Defenses to conversa-
tional English, where D(c, d) represents “c is protected by d.”

Solution: A good place to start is to remember how to handle nega-
tions. The negation of “c is protected by d” is “c is not protected by d.”

From there, we can construct a formal English version: “There exists
a plant and there exists a defense such that the plant is not protected by
that defense.” Conversationally, “Some plants don’t have some defenses”
means the same thing.

In section 2.6, we will learn how to correctly relocate negations within
quantified expressions. Doing so is often helpful when interpreting the mean-
ing of a complex expression.

Example 46:

Problem: Express There are three integers such that the sum of the
squares of the first two equals the square of the third in logic.

Solution: Let’s let r, s, and t represent the three integers. The sen-
tence says that we need to add together the squares of r and s (r2 + s2)
to get a result that equals the square of other integer (t2). That is,
∃r∃s∃t [r2 + s2 = t2], r, s, t ∈ Z. If you remember your basic geometry,
you’ll know that this expression is true — it’s the Pythagorean Theorem.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

2.4. MORE DETAIL ON EXISTENTIAL QUANTIFICATION 55

There’s no limit on the quantity of variables (and therefore on the quantity
of quantifiers) we can have in an expression. Use as many as you need to say
what needs to be said.

2.4.3 An Extended Existential Quantification Example

Ready to see a more involved example of nested existential quantification?
Sure, you say that now . . .

Example 47:

Problem: Express this sentence in logic: There are some tow trucks in
some of the downtown parking garages.

Solution: Compared to our examples so far, this sentence has a lot of
detail. So that the structure of the answer doesn’t get obscured by that
detail, we will temporarily suspend our “one concept per predicate” rule.
Once we have the structure in place, we’ll reinstate that rule and produce
the final answer.

We have three basic ideas for which predicates are needed: Tow trucks,
downtown parking garages, and storing the trucks in the garages.

T (x) : x is a tow truck, x ∈ Vehicles
G(x) : x is a downtown parking garage, x ∈ Buildings
I(x, y) : x is inside of y, x ∈ Vehicles, y ∈ Buildings

We need to say that some trucks are in some garages. Maybe this will
work:

∃v∃b I(T (v), G(b)), v ∈ Vehicles, b ∈ Buildings

No, it won’t. I() accepts a vehicle and a building, but T () and G()
return boolean values. It’s like trying to pass a character string to a
square root function. OK, let’s separate the predicates and try combin-
ing them with implications (because that’s what we ended up using in

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

56 CHAPTER 2. QUANTIFIED EXPRESSIONS

the extended universal quantification example of section 42):

∃v [T (v)→ ∃b (G(b)→ I(v, b))], v ∈ Vehicles, b ∈ Buildings

This is a WFF, but still isn’t correct. In logical English, it reads as
“There exists a vehicle such that, if the vehicle is a tow truck, then there
exists a building such that, if the building is a downtown parking garage,
then the vehicle is in the garage.”6 The problem is that the conditionals
don’t help here. They were important for the universal quantification
example, because we needed to cover every member of a subset of the
domain. Here, with existential quantification, we don’t need to say if a
tow truck exists; rather, we merely need to say that one does. For that
purpose, AND is all we need to express our desired meaning:

∃v [T (v) ∧ ∃b (G(b) ∧ I(v, b))], v ∈ Vehicles, b ∈ Buildings

In logical English, and playing fast and loose with plurals to keep it
from being an even bigger mess, we have “There exists at least one ve-
hicle such that the vehicles are tow trucks and there exists at least one
building such that the buildings are downtown parking garages and the
vehicles are in the garages,” or, conversationally, “Some tow trucks are
parked in a few downtown parking garages.” That’s not exactly the same
wording as we were given, but it’s logically equivalent, which is fine.

Now that we have the structure the way we want it, we need to fix the
logical expression so that each predicate covers just one detail. We need
several more predicates; here’s the complete set:

T (x) : x is a truck, x ∈ Vehicles
W (x) : x is for towing, x ∈ Vehicles
D(x) : x is located downtown, x ∈ Buildings
G(x) : x is a garage, x ∈ Buildings
P (x) : x is a vehicle parking location, x ∈ Buildings
I(x, y) : x is inside of y, x ∈ Vehicles, y ∈ Buildings

Adding them to the expression is easy; they are placed in groups based
on the part of the sentence they are describing:

∃v [T (v) ∧W (v) ∧ ∃b (D(b) ∧G(b) ∧ P (b) ∧ I(v, b))],

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

2.4. MORE DETAIL ON EXISTENTIAL QUANTIFICATION 57

v ∈ Vehicles, b ∈ Buildings

And, finally, we’re done!

Tying up some loose ends from Example 47:

• That last expression is a little overwhelming. Can you give me a break-
down to help me make sense of it? Sure; take a look at Figure 2.1.

• Seems that → goes with ∀ and ∧ goes with ∃, right? Basically, yes. This
isn’t to say that we can’t mix and match when the situation warrants,
but in many circumstances this rule of thumb works.

• Why did you move ∃b to the middle of the expression? You’ve probably
written a counter-controlled WHILE loop as part of a program. Where
did you declare the variable, at the start of the subprogram or just ahead
of the loop? Probably the latter, because that’s where you needed the
variable – why declare it until you need it? The same idea applies here.
We didn’t need b right away, so the quantifier wasn’t needed right away,
either.

• So . . . we can put all of the quantifiers at the front of the expression?
Yes, you can, but it’s best that you don’t. Readers will expect you
to hold off on inserting quantifiers until they are needed. Why make
them remember more variables before those variables are necessary?7

Also, delaying the quantifiers helps the expression ‘read’ a little more
naturally.

• I really like compact expressions. Is that ‘one concept per predicate’ rule
really necessary? In this book it is! Here’s one way to look at it: If
you could dump everything into a single predicate, how would you ever
learn how to use logical operators? It’s like a child ‘cleaning’ her room
by stuffing all of her toys into her closet.

• Do we have to write the domains after every . . . single . . . expression?
Nope! You can instead begin by saying something like “In the following
expressions, assume x ∈ Vehicles and y ∈ Buildings.” But if you get
in the habit of putting domains after every expression, you (and the
reader) will be less likely to overlook them.

6Yuck!
7‘Cognitive load’ is the phrase that describes this. You could also use it as an insult:

My friend, no one can say that you’re a cognitive load.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

58 CHAPTER 2. QUANTIFIED EXPRESSIONS

∃v [T (v) ∧W (v) ∧ ∃b (D(b) ∧G(b) ∧ P (b) ∧ I(v, b))]

There’s at least

one tow truck
and

there’s at least one

downtown parking garage
and

those trucks are

in those garages

Figure 2.1: A breakdown of the final expression from Example 47.

2.5 Mixing Universal and Existential
Quantification

Nesting matching quantifiers (e.g., ∃a∃b) is relatively straight-forward and
creates expressions whose meanings aren’t too hard to understand. Nesting
mismatched quantifiers (e.g., ∀a∃b) is also often necessary. Unfortunately,
making sense of such mixed nestings usually isn’t as easy, even though the
process is the same.

Example 48:

Problem: Express both ∀p∃q L(p, q) and ∃p∀q L(p, q) in conversational
English, where L(p, q) represents “p laughs at q,” and p and q share the
domain of people.

Solution: ∀p∃q L(p, q) means, in logical English, “Considering all peo-
ple, there exists at least one person that all people laugh at.” We can
condense that to the more conversational, “There’s someone that we all
laugh at.”8 Notice that this means a universally-laughed-at person also
laughs at himself or herself.

∃p∀q L(p, q) means “there exists a person such that, no matter which
person you name, the first person will laugh at them.” Conversationally,
“There’s someone who laughs at everyone” (again, including himself or
herself).

8Maybe one of those hapless burglars who gets stuck upside-down in a restaurant’s
kitchen exhaust ductwork. They must laugh at themselves . . . eventually.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

2.5. MIXING UNIVERSAL AND EXISTENTIAL QUANTIFICATION 59

A common question: Does the order of the quantifiers’ variables have to
match the order of variables’ appearances in the expression? That is, could I
write “∀b∃a Q(a, b)” instead of “∃a∀b Q(a, b)”? Technically, ‘yes,’ but prac-
tically ‘no.’ It’s very rare for people to change the order. Why? Because
it makes interpretation of mixed-quantifier expressions unnecessarily difficult.
That’s reason enough for us not to do it. By the way, the order of the variables
in nestedmatching-quantifier expressions (such as ∀x∀y vs. ∀y∀x), by the way,
doesn’t matter logically, but again, it’s still best to quantify the variables in
the order in which they appear in the expression being quantified.

Example 49:

Problem: Express this sentence in logic: The tow trucks are in the down-
town parking garages.

Solution: This is the sentence of Example 47 with some small changes.
Perhaps the most intimidating change is that the linguistic clues of quan-
tification are missing — words such as ‘some’ and ‘all’ aren’t provided.
We need to deduce the intended quantifiers using our knowledge of En-
glish.

The subject “tow trucks” includes no limitations, indicating that the
meaning is all tow trucks. There are also no limitations on the park-
ing garages. It’s tempting to assume that the intended meaning is again
“all”; that is, all of the tow trucks are in all of the parking garages. But
. . .must all of the parking garages contain tow trucks? The statement
doesn’t quite say that; all we know is that, if the statement is true, the
tow trucks can be found in the garages — some of the garages, possibly
all of them. Thus, we need to universally quantify the vehicles and ex-
istentially quantify the buildings. The only real difference between this
sentence and the one of Example 47 is the change in the vehicle quantifi-
cation.

Using the same predicates as used in Example 47 and our deciphering
of the quantifiers, we can create a corresponding logical version of the
statement. Not surprisingly, it’s just the solution to Example 47 with the
swap of quantifiers and of one AND for an implication (as we’ve seen, →
usually goes with ∀):

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

60 CHAPTER 2. QUANTIFIED EXPRESSIONS

∀v [(T (v) ∧W (v))→ ∃b (D(b) ∧G(b) ∧ P (b) ∧ I(v, b))],
v ∈ Vehicles, b ∈ Buildings

In somewhat condensed logical English: “For all vehicles, if the vehi-
cle is a tow truck, then there exists a downtown parking garage and the
tow truck is in it.”

You may be wondering if the intended meaning of this statement could
be exactly that of Example 47. Perhaps, but that seems unlikely, given
how people use English. Based on the wording of the sentence, the all-
trucks/some-garages interpretation is the most likely. Try to keep this
issue of interpretation in mind the next time you have to write down a
recipe, create a software specification, or read a legal document.

For reference, Table 12 summarizes when mixed quantifications are true
and false.

Table 12: When Are Mixed Quantifications True/False?

Quantification Is True When . . . Is False When . . .
∀m ∃nP (m,n) no matter the m, you can

find an n that makes P ()
true

there’s an m for which no
n exists to make P () true

∃m ∀nP (m,n) some m can be paired
with any n yet P () is true

we try every m, but no
n exists that makes P ()
true

The ‘true’ case of ∀m∃nP (m,n) is worth an additional mention. You
don’t have to find a single n that works with all possible values of m – that
is, each of the m values can have its own n value. For example, no matter
which non-zero integer you give me (∀i), I can find a rational number (∃j)
such that their product is 3. That rational number is based on i (j = 3/i), and
is therefore different every time, but that’s all we need to make ∀i∃j (i · j = 3)
true.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

2.6. GENERALIZED DE MORGAN’S LAWS 61

2.6 Generalized De Morgan’s Laws
In Chapter 1 we learned a pair of equivalences known as DeMorgan’s Laws:
¬(p ∧ q) ≡ (¬p ∨ ¬q) and ¬(p ∨ q) ≡ (¬p ∧ ¬q). They (as well as the rest of
the equivalences) apply to predicates as well as they do to propositions.

Example 50:

Consider ∃x[P (x)∧Q(x)] (it doesn’t matter what P () and Q() represent).
P (x) ∧ Q(x), using an x from its domain, is just a compound proposi-
tion. We can apply Double Negation and De Morgan to it: P (x) ∧
Q(x) ≡ P (x) ∧Q(X) ≡ P (x) ∨Q(x). Thus, ∃x[P (x) ∧ Q(x)] ≡
∃x[P (x) ∨Q(x)].

But what if we want to move negations into (or out of) quantifiers rather
than just into or out of parentheses? De Morgan’s Laws don’t work across
quantifiers, but we can generalize those laws to handle quantification. generalizedThe
result is sometimes called Generalized De Morgan’s Laws. de morgan

The generalization comes from a pair of observations, of which we will dis-
cuss just one. Consider the expression ∀x ¬P (x), x ∈ {1, 2, . . . , n}. ∀x ¬P (x)
is a notation for ¬P (1)∧¬P (2)∧ . . .∧¬P (n). If we were to apply De Morgan’s
to that, we would produce the equivalent expression ¬(P (1)∨P (2)∨. . .∨P (n)).
Ignoring the leading negation for a moment, the disjunction can be represented
by ∃x P (x). Thus, ∀x ¬P (x) is logically equivalent to ¬∃x P (x). Notice that
the moving the negation from inside to outside ‘flipped’ the quantifier from
universal to existential.

Both Generalized De Morgan’s Laws are given in Table 13.

Table 13: Generalized De Morgan’s Laws

1. ¬∀x P (x) ≡ ∃x ¬P (x)
2. ¬∃x P (x) ≡ ∀x ¬P (x)

A common use for Generalized De Morgan’s Laws is to move negations
inside of quantifiers to create a result that is easier to express in English.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

62 CHAPTER 2. QUANTIFIED EXPRESSIONS

Example 51:

Problem: Construct an expression that is equivalent to ¬∀c∀dD(c, d) by
moving the negation inside of the quantifiers.

Solution: First, let’s think about what ¬∀c∀d means. ¬∀c means ‘not
all’ – that is, some or none. The negation does not also apply to ∀d. (If
you need both to be negated, you need a second negation, as in ¬∀c¬∀d.)
In English, we could try to say, “For not all c and for all d, . . . ” Or, we
could try, “For some c or no c, but for all d, . . . ” Either way, it’s pretty
awkward.

Applying the first Generalized De Morgan’s Law (GDM #1) twice (once
per quantifier), we can move the negation inside:

¬∀c∀dD(c, d) ≡ ∃c¬∀dD(c, d) [GDM #1]
≡ ∃c∃d¬D(c, d) [GDM #1]

This is easy to express in English; in fact, we already did, back in Exam-
ple 45: “Some plants don’t have some defenses.”

2.7 “Exactly n” Expressions

If you’ve studied quantifiers previously,uniqueness you may have encountered the unique-
ness quantifier, ∃!x.quantifier It was created to represent the concept of “exactly one.”
This is a useful concept, of course, but we don’t need a new quantifier to
express that idea – we can express it using the quantifiers and logical oper-
ators we already have. Learning how to do it is a worthwhile activity, not
only as additional practice with quantification, but also as a starting point for
extensions of the idea.

2.7.1 Exactly One

To represent this idea, we need a way to exclude “or more” from the “there
exists one or more” meaning of ∃. One way to do that is to think of what “one
or more” means. For the sake of illustration, consider integers. If x represents
a quantity of items and is an integer, then x ≥ 1 represents “one or more” of
those items. Similarly, x = 1 represents “exactly one.” To reduce x ≥ 1 to

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

2.7. “EXACTLY n” EXPRESSIONS 63

−1 0 1 2

Figure 2.2: (x ≤ 1) ∧ (x ≥ 1) ≡ (x = 1)

x = 1, we can AND x ≥ 1 with x ≤ 1 – their intersection is x = 1. Figure 2.2
illustrates this on a number line.

Now all we have to do is figure out how to express x ≤ 1 (in English,
“no more than one”) logically. Imagine that you thought you had two cans of
beans in the cupboard, but you can find only one. The following conversation
with your roommate ‘Slash’ results:

You: “Seriously, your name is ‘Slash?’ ”
Slash: “Deal with it, OK?”
You: “Whatever. Look, I can’t find the second can of beans. Do

you see it?”
Slash: (takes a look) “Idiot, it’s sitting right in front!”
You: “That’s the first can, genius!” 9

It may be hard to believe, but there is a point to that touching story: If
you’ve think you’ve found two or more items, but they all turn out to be the
same item, then you have exactly one item.

This “no more than one” idea can be turned into logic fairly easily. The
following description takes several liberties, but should help clarify the struc-
ture of the final logical expression. Let y be you and s be Slash. You search
through all of the cans (∀y) and find one of beans (B(y) is true). Slash does
the same (∀s) and also finds one (B(s) is true). But if there is only one can
of beans, then the can you found is the same can he found (y = s). That is,
any time more than one can seems to have been found, just one was found.
As a quantified expression: ∀y∀s [(B(y)∧B(s))→ (y = s)], where the domain
of y and of s is the content of the cupboard (that is, the things we’re trying
to count). In English: “Whenever two cans of beans are found, they’re really
the same can.” Or, “There is at most one can of beans in the cupboard.” (‘No
cans’ is a viable option; this is a conditional expression.)

Almost done. All we have left to do is to AND that expression with one
for “at least one” and we’ll have the structure of an expression for “exactly

9Tune in next week, when you and Slash try to find your marbles, and hilarity ensues!

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

64 CHAPTER 2. QUANTIFIED EXPRESSIONS

one.” And that’s easy:

∃a P (a) ∧ ∀b∀c [(P (b) ∧ P (c))→ (b = c)], a, b, c ∈ The Domain

∃a P (a) gives the “at least one” meaning, and the rest gives “at most one.”
Together, we have “exactly one.” The two halves are independent expressions
glued together.

There are several ways to express “exactly one” in first-order logic. One
manages to shorten the version above by reusing the ∃ variable within the ∀
half:

∃a (P (a) ∧ ∀b [P (b)→ (b = a)]), a, b ∈ The Domain

In logical English: “There exists a domain element that has the property
and, for all domain elements, if an element has the property, it’s the same
element as the first one.” Conversationally: “Exactly one domain element has
the property.” You can think of a as representing the “exactly one” candidate,
and b as representing all of the challengers.

Now that we have two general structures that we can use, converting “ex-
actly one” expressions to logic is fairly easy: Identify the domain and necessary
predicates for the given situation, and use them instead of the placeholders
in either of the two general structures, with adjustments as needed for the
characteristics of the problem.

Example 52:

Problem: Express “Earth has exactly one moon” as a quantified logical
expression.

Solution: We are trying to count moons, so we will start by using a
domain of “moons,” but will show how to change it to the more general
“heavenly bodies” later.10 We also need a way to say that a moon belongs
to Earth. “O(x) : x orbits Earth” will do the job. Notice that our choice
of domain for x prevents consideration of artificial satellites. All that
remains is to insert these pieces into one of the two general expressions
developed above. Let’s use the second. The domain becomes ‘Moons’
and O() goes in place of P ():

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

2.7. “EXACTLY n” EXPRESSIONS 65

∃m (O(m) ∧ ∀n [O(n)→ (n = m)]), m, n ∈ Moons

To use the more general “heavenly bodies” as the domain, we need to
add a predicate that describes moons. Easy: “M(x) : x is a moon.” But
where does this predicate go within the expression? Also easy: Alongside
each occurrence of O(). The reason is that we are talking about Earth
moons. M() handles moons, and O() gives them to Earth; together, they
describe moons of Earth. The expression:

∃h (O(h) ∧M(h) ∧ ∀i [(O(i) ∧M(i))→ (i = h)]),
h, i ∈ Heavenly Bodies

One more adjustment: Some of you are probably not happy with O()
including Earth as a constant, and would prefer that O() be more gen-
eral so that our Earth restriction is more obvious. No problem: We can
change O() to have two arguments – “O(x, y) : x orbits y” – and can use
‘Earth’ for y in the expression:

∃h (O(h,Earth) ∧M(h) ∧ ∀i [(O(i,Earth) ∧M(i))→ (i = h)]),
h, i ∈ Heavenly Bodies

Example 53:

Problem: Express this “exactly one” situation in logic: For all positive
integers p, there’s exactly one non-negative integer i such that p · i = 0.

Solution: You’re probably thinking, “Well, that’s a long-winded way of
saying that anything times zero is zero!” And it is. But, the point of the
example is not long-windedness.11

At first glance, the structure of the statement makes this exactly one
situation appear to be different that the previous examples. This state-
ment begins with a ∀ and the “exactly one” is buried inside of it. Thanks
to the flexibility of English, we can rewrite it to match the structure we
expect to see: Exactly one non-negative integer i makes p · i = 0, where

10If you’re expecting a joke about swimsuit models, you’ll have to make your own. I’m
not looking for trouble!

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

66 CHAPTER 2. QUANTIFIED EXPRESSIONS

p is any positive integer.

Assuming that we’ll again use the shorter “exactly one” structure, we
can see that i should be the existentially quantified variable and can
guess that p will be universally quantified (one quantifier seeks one vari-
able for a logical marriage, right?). But what should the predicate(s) be?
We’re only dealing with integers, but both of the variables have certain
restrictions – i is non-negative and p is positive. Perhaps they can be our
predicates:

∃i ((i ≥ 0) ∧ ∀p [(p > 0)→ (p · i = 0)]), i, p ∈ Z

Something’s missing – nothing here says that there’s exactly one i. There’s
at least one, but there can be more. (If this doesn’t make sense, try con-
verting the expression to English.)

The problem is that we allowed p to fill the role of the challenger to
i, but p is really just a bystander who got caught up in the excitement.
We erred by trying to blindly fit our problem to the exactly-one structure
we wanted to use, forgetting to think about what the parts of that struc-
ture represent. To do “exactly one,” we need candidate and challenger
variables that come from the same domain and represent the same kind
of items. Compare the above attempt to this:

∃i ((i ≥ 0 ∧ p · i = 0) ∧ ∀j [(j ≥ 0 ∧ p · j = 0)→ (j = i)]), i, j, p ∈ Z

This looks like progress; if nothing else, the structure looks better. In
English: “There’s an integer that’s non-negative that we can multiply
with p to produce zero and, for all integers, if we find such an integer,
it’s the same as the first one.” But we’re not finished – p has two issues.
First, we gave p a domain of Z, but we need it to be a positive integer.
Second, we didn’t quantify p, which means it’s free and we don’t allow
free variables (see Section 2.2.2). Because p can be any positive integer,
p should be universally quantified.

As long as we’re fixing those problems, let’s also consider the i ≥ 0
conditions. We can eliminate those by using a domain of Z∗ for i and
j. You can argue that by using such a domain we’re ignoring our ‘one
step above things’ rule for domains, but as Z∗, Z+, and the like are well-

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

2.7. “EXACTLY n” EXPRESSIONS 67

accepted and commonly-used in mathematics, we can make an exception
without feeling too guilty. And, allowing the use of Z∗ means we’re free
to use Z+ to restrict p to be a positive integer. After making all of these
adjustments, our final expression is:

∀p∃i ((p · i = 0) ∧ ∀j [(p · j = 0)→ (j = i)]), i, j,∈ Z∗, p ∈ Z+

It’s no wonder mathematicians call p · 0 = 0 the zero product property;
giving it a name is so much easier.

2.7.2 Exactly Two

Understanding how to express “exactly one” is a challenge. Happily, with “ex-
actly one” covered, “exactly two” won’t be as difficult. In fact, we’ll approach
it the same way, starting with almost the same equivalence: (x ≤ 2) ∧ (x ≥
2) ≡ (x = 2).

Let’s start with x ≥ 2. We don’t have a quantifier for that, like we do for
x ≥ 1. We need to construct our own expression possessing the ‘more than
one’ meaning. ∃ means ‘at least one,’ as we know. A pair of ∃s means ‘at
least two’ so long as they are representing two distinct items. In symbols:
∃a ∃b (P (a) ∧ P (b) ∧ (a 6= b)). Because a and b are different items both
possessing the property of interest (P ()), we have two. Because there’s no
limit on more such items existing, we also still have the ‘or more’ meaning.

Now consider x ≤ 2. To get x ≤ 1, we created an expression that means,
essentially, “if we think we found two, we were wrong.” We’ll just change ‘two’
to ‘three:’ ∀c ∀d∀e [(P (c)∧P (d)∧P (e))→ ((c = d)∨ (c = e)∨ (d = e))]. This
says that if c, d, and e all have the property, we’re at least double-counting
(two of the three are the same), and maybe even triple-counting (all three
are the same). Double-counting means there are two items with the property,
triple-counting means there is just one, and the implication allows for there
to be none. In short, we have captured the meaning ‘at most two.’

The simple way to get “exactly two” is to AND these two expressions to-
gether, just as we did to create the first version of our “exactly one” structure:

∃a ∃b (P (a) ∧ P (b) ∧ (a 6= b)) ∧
∀c∀d∀e [(P (c) ∧ P (d) ∧ P (e))→ ((c = d) ∨ (c = e) ∨ (d = e))],

11Surprised? ,

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

68 CHAPTER 2. QUANTIFIED EXPRESSIONS

a, b, c, d, e ∈ The Domain

Also just like “exactly one,” we can create a shorter version that reuses
the ∃ variables:

∃a ∃b (P (a) ∧ P (b) ∧ (a 6= b) ∧ ∀c [P (c)→ ((c = a) ∨ (c = b))]),
a, b, c ∈ The Domain

Example 54:

Problem: Express in logical notation: “My bicycle has exactly two wheels.”

Solution: Because we’re counting bicycle wheels, that will be our do-
main.12 We need a predicate to say that the wheels belong to my bike:
“B(x) : x is part of my bike” will suffice. We’re ready to put them in place:

∃w ∃x (B(w) ∧B(x) ∧ (w 6= x) ∧ ∀y [B(y)→ ((y = w) ∨ (y = x))]),
w, x, y ∈ bicycle wheels

That’s it! No intentional errors, no new twists. Many English → Logic
problems are straight-forward. But, there is one lingering ‘thing’ thing . . .

“Bicycle wheels” is more than a single step above ‘Things.’ “Wheels”
would be better, with the addition of a predicate that’s true when the
given wheel is used on bicycles. If you’ve followed the previous exam-
ples where we’ve simplified domains (examples 42 and 52, say), you know
how to adjust this expression. Do it! And, don’t be afraid to adopt this
approach yourself on future problems – use a complex domain until you
get the logical structure in place, then simplify the domain and add the
corresponding predicate(s).

2.7.3 Exactly n

We can use this (x ≤ n)∧(x ≥ n) ≡ (x = n) approach to handle any n ≥ 1 we
need. Unfortunately, the logic gets polynomially messier as n increases. The

12I know what you’re thinking; patience . . .

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

2.7. “EXACTLY n” EXPRESSIONS 69

number of comparisons in the ∀ half of the uncombined expressions follows a
sequence known as the Triangular numbers: 0, 1, 3, 6, 10, 15, . . . The n-th Tri-
angular number equals 1

2(n2 +n). For instance, if you had to express ‘exactly
four,’ you’d have five variables in the ∀ section, and would need to express
that at least two of them are the same. There are 10 ways to pair up those five
variables: {(a, b), (a, c), (a, d), (a, e), (b, c), (b, d), (b, e), (c, d), (c, e), (d, e)}.13

On the bright side, it’s unusual to need to express situations above “exactly
two,” even in a discrete structures class. But now you know how to do it if
you need to.

13This set is an example of a binary relation. We cover a lot of material on such sets in
Chapter 8.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

Chapter 3

Logical Arguments

Monty Python’s Flying Circus, a late-1960s/early-1970s British sketch-comedy
television show, was created by a group of five Oxford- and Cambridge-
educated comedy writers and one American animator. Several of the sketches
from that show have acquired comedic immortality, including the “Argument
Clinic” from the episode “The Money Programme” that aired in November of
1972. Figure 3.1 is a screen-capture. In the bit, a man (“Man,” played by Sir
Michael Palin1) pays for what turns out to be an unsatisfying argument with
a second man (“Mr. Vibrating,” John Cleese2). If you have never seen it, you
should stop reading this and go watch it.3

Welcome back! In the middle of the non-argument argument, Palin gives
a very good definition, which we adopt here.

Definition 16: Argument argument

“An argument is a connected series of statements to establish a definite
proposition.”

Our demonstrations of logical equivalence from Chapter 1 are covered by
this definition, as we used a sequence of logical expressions to establish that all
expressions in the sequence are logically equivalent. Arguments can be much

1Palin was appointed a Knight Commander of the Most Distinguished Order of Saint
Michael and Saint George in 2019, for services to travel, culture and geography.

2Because I know you’re wondering: Cleese has routinely declined royal honors.
3Many of Monty Python’s sketches, including the Argument Clinic, can be found on

YouTube: https://www.youtube.com/user/MontyPython

71

https://www.youtube.com/user/MontyPython

72 CHAPTER 3. LOGICAL ARGUMENTS

Figure 3.1: Michael Palin, left, argues arguments with John Cleese in Monty
Python’s “Argument Clinic” sketch. Credit: BBC.

more involved. This chapter introduces common argument structures and
shows how logical equivalences can be combined with rules of logical inference
to create complex arguments, our final stop on the road to proofs.

Please be aware that what are often called ‘arguments’ on television and
radio talk shows rarely possess a logical foundation. This chapter’s arguments
will be based on logic, will not cover politics, and will require no raised voices
or finger-pointing.

3.1 Reasoning

Have you ever written down an answer to an exam question for no better
reason than it felt like the correct answer? If so, you relied on your intuition,
for better or worse. You probably feel more confident in answers that you can
convincingly justify. The process of drawing justifiable conclusions from given
information using principles of logic is reasoningreasoning .

There are many forms of reasoning, some more formal than others. Here,
we have need of two forms of reasoning: deductive and inductive.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

3.1. REASONING 73

3.1.1 Deductive Reasoning

One night, before you go to bed, you set your phone on the nightstand, fully
expecting that it will still be there when you wake up in the morning. You
have that expectation because you have two facts: You placed the phone on
the nightstand, and Newton’s First Law of Motion (a motionless object will
remain motionless until a force is applied).4 Assuming that nature, pets, and
practical-joking roommates fail to apply adequate forces, those two facts will
convince you that your phone will be on the nightstand in the morning. The
logical connection between those facts and your conviction is deduction. deduction

Definition 17: Deductive Argument deductive argument

A deductive argument uses general principles of logic, applied to a given
set of facts, to draw a conclusion from those facts.

Example 55:

Problem: You have a dog as a pet. You have dropped a piece of bread
on the floor. You conclude that you won’t have to pick up the piece of
bread. Is that a deductive argument?

Solution: Yes, that is a deductive argument. Anyone who has ever had a
dog knows that dogs will eat any food – or anything that remotely mimics
food – that reaches the ground. Combine that knowledge with the given
facts, and you know that the bread is as good as gone.

Example 55’s solution is incomplete – we don’t (yet!) know the general
principle of logic that is being applied to those facts to reach that conclusion.
Logical justifications are an essential component of a complete deductive ar-
gument.

All of the proof forms presented in this book will be forms of deductive
arguments . . . even the ones named after induction.

4Second definition: An unguarded Fig Newton will move into the nearest mouth.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

74 CHAPTER 3. LOGICAL ARGUMENTS

3.1.2 Inductive Reasoning

You’ve probably noticed that the sun rose in the east two days ago. It did the
same thing yesterday morning, and again this morning. Based on that, you
probably expect it to rise in the east again tomorrow morning, and every day
thereafter.5 This is an example of reasoning by inductioninduction : You started with
some observations, and formed a general conclusion based on those observa-
tions.

Definition 18: Inductive Argumentinductive argument

An inductive argument reaches a general conclusion from a set of specific
observations.

Example 56:

Episodes of the Fox television show “Bones” usually start with unsus-
pecting people finding human remains, and conclude with the perpetra-
tor being captured by an FBI agent and a forensic anthropologist. The
following dialog appears in the first-season episode “Woman in the Tun-
nel” as the team examines a virtual representation of tunnels under a city:

5Until the Earth’s magnetic poles flip and the sun starts rising in the west. That won’t
happen for thousands of years . . . probably.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

3.1. REASONING 75

Booth: Well, we found that Civil War victim near a cave-in.
Maybe the treasure’s on the other side?

Goodman: Inductive, reductive or deductive?
Brennan: Deductive.
Goodman: As you wish. Ms. Montenegro, please remove all tun-

nels containing power, cable or utility lines.
[. . .]

Booth: Oh, what about diamond dust? You said that there
was diamond dust in the old tunnels. There was also
diamond dust on the Civil War guy, so . . . what? I’m
not allowed to help now?

Goodman: That’s inductive logic.
Brennan: We agreed on deductive.

Booth: I’m sorry, I’m just, you know, trying to think outside
your box.

The Goodman character deduces from the facts that the body was from
the U.S. Civil War period and that people in the 1860s did not have
amenities such as cable television to decide that a body from that time
could not have been resting in a tunnel with modern wiring. Later, Booth
tries to generalize from specific examples of the appearance of diamond
dust to draw a conclusion. That’s inductive reasoning.

The dialog used in Example 56 includes a reference to reductive reasoning,
which is also a useful if somewhat confusing way to form an argument. We
won’t discuss it in this chapter, but we will in Chapter 4.

Defining inductive arguments isn’t as straight-forward as defining deduc-
tive arguments. In philosophy, inductive reasoning allows for uncertainty –
an inductive argument strongly suggests that the conclusion is correct, but
doesn’t claim that it is correct. In mathematics and the sciences, we crave
certainty, but the structure of inductive reasoning is appealing because it is di-
rectly applicable to a variety of provable situations. To address this dilemma,
mathematical induction wraps deductive reasoning in a shell of inductive rea-
soning, giving us the form of induction but the certainty of deduction. We
will cover mathematical induction in a later chapter.

3.1.3 Abductive Reasoning

The American city of Tucson, Arizona appears to be roughly surrounded by
mountain ranges, including the Rincons to the east, the Santa Catalinas to

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

76 CHAPTER 3. LOGICAL ARGUMENTS

Figure 3.2: Mountain ranges near Tucson, Arizona. Credit: Arizona Daily
Star.

the northeast, the Tortolitas to the northwest, and the Tucson Mountains to
the west (see Figure 3.2). It’s tempting to assume that this current geologic
arrangement was formed from the collapse of an ancient and massive volcano’s
caldera, with the current mountain ranges being the uncollapsed edges of the
volcano.6

Such an assumption can arise from abductive reasoning. In abduction,
abduction we start with the end result and propose possible situations that could have

produced that result. This is roughly the converse of the deductive reasoning
process combined with the uncertainty of inductive reasoning. As such, it isn’t
useful logically, although it can be helpful for brainstorming ideas that might
turn out to be provable.

Example 57:

Problem: In Gotham City, Detective Montoya is investigating a homicide.

6Tempting, but likely incorrect. Based on the types of rocks, the current thinking is
that the volcano was where the Catalinas are, and detachment faults caused the Tucson
Mountains to ‘slide’ to the southwest. The city is built on the mile-deep sediment that rests
in-between.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

3.2. CATEGORIZING DEDUCTIVE ARGUMENTS 77

While searching the victim, she finds a joker playing card in his hand.
Without hesitating, she pulls out her phone and calls Commissioner Gor-
don. Why did she feel it necessary to ignore her chain of command and
call him directly?

Solution: Through abductive reasoning, of course! In Gotham, a dead
man holding a joker could mean that the Joker has escaped from Arkam
Asylum and has killed again. Or, perhaps the Penguin is the real culprit
and is trying to shift the blame. Either way, it’s time to call Batman.
The brainstorming that occurs when using abductive reasoning is helpful
when investigating crimes.7

Given its speculative nature, we will consider abduction no further.

3.2 Categorizing Deductive Arguments

For the rest of this chapter, we will consider only deductive arguments. Some
deductive arguments are more speculative than others. In this section we will
discuss that distinction.

3.2.1 Writing Deductive Arguments

In section 1.3.6, we learned that in an implication, the left operand can be
called the hypothesis and the right the conclusion. Deductive arguments can
be viewed as implications with multiple hypotheses (some given to us and
some deduced by us) and a single ultimate conclusion.

Example 58:

We can rewrite the deductive argument from Example 55 as an if-then
sentence: If you have a dog and you dropped a piece of bread on the
floor, then you did not need to pick up that piece of bread. This makes
the individual hypotheses of the compound hypothesis, and the intended
conclusion, clear. Written in logic, we have (d∧ b)→ ¬n, where d is ‘you
have a dog’, b is ‘you dropped a piece of bread on the floor’, and n is ‘you
need to pick up that piece of bread’.

7Even fictional ones. Yes, Batman is a fictional character. Deal with it.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

78 CHAPTER 3. LOGICAL ARGUMENTS

Although the hypotheses and the conclusion are clear, the justification
that allows us to reach that conclusion from those hypotheses is not. As
mentioned earlier in this chapter, a complete deductive argument also includes
justifications for its steps. To make it easy for us to include these explanations,
we will adopt a vertical format for our argument components. For example,
here’s the vertical form of the logical expression (d∧b)→ ¬n from Example 58:

d
b

∴ ¬n

The vinculum8 separates the hypotheses from the conclusion, and the
hypotheses are assumed to be ANDed together. The symbol ∴ (LATEX :
\therefore) means ‘therefore’ and is used to highlight the conclusion. For
such a short expression, we could adopt the horizontal equivalent: d, b / ∴ ¬n.
The advantage of the vertical form is that we have room to the side to provide
each line with a justification. While we’re at it, we can also number the lines,
to make referencing them easy:

(1) d [Given]
(2) b [Given]
(3) ∴ ¬n [Ummmm . . .magic?]

Sadly, we still don’t know how to get to the conclusion. But we will!

3.2.2 Valid and Sound Arguments

For an argument to be convincing, we must be able to see that the truth of
the conclusion is based on the truth of the available hypotheses. Such an
argument is said to be valid.

Definition 19: Valid Argumentvalid argument

Any deductive argument of the form (p1 ∧ p2 ∧ . . . ∧ pn) → q is valid if
the truth of conclusion q can be derived from the truth of hypotheses p1
through pn.

8The horizontal line, but you already knew that because you’ve read the math review
appendix . . . right?

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

3.2. CATEGORIZING DEDUCTIVE ARGUMENTS 79

What the definition of a valid argument doesn’t say is whether or not the
hypotheses are actually true! This might appear to be a huge problem, but
it isn’t. If you think back to abductive reasoning for a moment, you’ll recall
that it was speculative – we thought of one or more situations that could have
caused the conclusion to result. We can assume the truth of the hypotheses
that describe one of those situations, correctly apply logic to those hypotheses,
and determine if the conclusion follows. If it does, the validity of the argument
has been logically established, even though the hypotheses are not yet known
to be true.

Example 59:

Consider the following argument:

(1) 63 is evenly divisible by 2
(2) 63 is evenly divisible by 3
(3) ∴ 63 is evenly divisible by 6

What do you think of that argument? If you are dismissing it because
63 is not evenly divisible by two, you’re missing the point. The argument
itself is valid: When you have a number that is divisible by both two and
three, it will also be divisible by six. Remember, in a valid argument, the
hypotheses need only be assumed true.

Valid arguments, then, have room for improvement: We could insist that
the hypotheses actually be true! For the argument to be anything more than
an exercise in logical construction, they need to be. If they are, we have more
than a valid argument – we have a sound one.

Definition 20: Sound Argument sound argument

Any valid deductive argument is sound when its hypotheses are true.

Because 63 is not actually evenly divisible by two, the argument of Ex-
ample 59 is not sound. Changing 63 to any multiple of six will make it both
valid and sound. Please note that a sound argument is necessarily valid, just
as a multiple of six is necessarily a multiple of two.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

80 CHAPTER 3. LOGICAL ARGUMENTS

3.3 Rules of Inference for Propositions
Let’s reflect on what a valid argument tells us: When the hypotheses are true,
the conclusion is true. Notice that a valid argument tells us nothing about
the truth of the conclusion when one or more of the hypotheses are false.

Because the hypotheses of a valid argument supply enough information to
reach the conclusion, we can demonstrate that validity with a truth table.

Example 60:

Consider the following trivial but valid argument:

(1) p
(2) q

(3) ∴ p ∧ q

We can rewrite this argument in the form of the logical expression
(p ∧ q)→ (p ∧ q). We don’t need to create a truth table to see that this
expression is true when both p and q are true, but we’ll do it anyway to
make a point:

p q p ∧ q (p ∧ q)→ (p ∧ q)
T T T T
T F F T
F T F T
F F F T

First, look at the third column (labeled p ∧ q), which represents our
conclusion. When both of the hypotheses are true (the first row), the
conclusion is true. This shows that the argument p, q / ∴ p ∧ q is valid.

Now consider the fourth column, which represents the entire argu-
ment. It’s a tautology! In this example, that’s also not much of a sur-
prise; p → p ≡ T is one of the logical equivalences (“Self-implication”)
presented in Chapter 1. Still, keep this observation in mind; we will
consider it again later in this section and also in section 3.5.1.

Using truth tables to verify the validity of arguments is possible, as we
just showed, but is tedious for all but the smallest of arguments. Fortunately,
we have an alternative.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

3.3. RULES OF INFERENCE FOR PROPOSITIONS 81

Remember, back in Chapter 1, when we used a given9 set of logical equiva-
lences to show that more complex expressions were also equivalences? We can
do the same sort of thing with arguments: We can construct large arguments
using smaller arguments as building blocks. We will also make use of those
logical equivalences to restate expressions into forms that suit our needs.

3.3.1 Eight Rules of Inference

The tiny valid argument used in Example 60 is known as a rule of inference.
rule of inferenceMany such tiny valid arguments exist, but only a few of them are used often

enough in this book to be worth learning. Some, such as the one used in
Example 60, are clearly valid. Others can be shown to be, again using a truth
table.

Table 14: Some Rules of Inference Worth Knowing

9But verifiable – you don’t have to trust us!

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

82 CHAPTER 3. LOGICAL ARGUMENTS

Name
(Alternate Name) Argument

p
(1) Conjunction q

(Conjunction Introduction) ∴ p ∧ q

(2) Simplification p ∧ q
(Conjunction Elimination) ∴ p

(3) Addition p
(Disjunction Introduction) ∴ p ∨ q

p ∨ q
(4) Disjunctive Syllogism p

(Disjunction Elimination) ∴ q
p

(5) Modus Ponens p→ q
(Affirming the Antecedent) ∴ q

q
(6) Modus Tollens p→ q

(Denying the Consequent) ∴ p
p→ q

(7) Hypothetical Syllogism q → r
(Transitivity of Implication) ∴ p→ r

p ∨ q
(8) Resolution p ∨ r

∴ q ∨ r

The word syllogismsyllogism is a synonym for deductive reasoning, making its use in
the name of an argument a bit redundant. But, those are the names most
people use, and so shall we.

If you take the time to verify the validity of these rules, you will probably
notice that they are all tautologies, as we’d hinted at in Example 60. This
isn’t coincidence. Recall that arguments (including rules of inference) have
the form (p1 ∧ p2 ∧ . . .∧ pn)→ q. We know that, for an argument to be valid,
when the hypotheses are all true, the conclusion must be true. In this case, the
complete argument will also be true ((T∧T∧ . . .∧T)→ T ≡ T→ T ≡ T).
But even if one or more of the hypotheses are false, the argument will still be
true ((T ∧ F ∧ . . . ∧ T) → whatever ≡ F → whatever ≡ T). Thus, valid

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

3.3. RULES OF INFERENCE FOR PROPOSITIONS 83

arguments (including rules of inference) must always evaluate to true; in other
words, they are always tautologies.

Occasionally, people lump rules of inference together with logical equiv-
alences and attempt to use the former as if they were the latter. Rules of
inferences do not claim that the hypotheses are logically equivalent to the
conclusions. That may sometimes be true (as it is with Conjunction, for
example), but most often it is not.

3.3.2 Using Rules of Inference in Arguments

We know about logical equivalences, valid arguments, and rules of inference.
It’s time to put them to work producing conclusions from given hypotheses.
We will start with a simple argument.

Example 61:

Problem: Given ¬b and a→ b, what can we conclude about a?

Solution: By modus tollens, we can conclude that a must be false. Here’s
the complete argument, in our preferred vertical form:

(1) ¬b [Given]
(2) a→ b [Given]
(3) ∴ ¬a [1, 2, Modus Tollens]

By listing ¬b as a hypothesis, we are assuming it to be true. For the
negation of b to be true, b itself must be false. This is how we can say
something is false when every expression is assumed true. In the same
way, the conclusion of ¬a says that we have determined a to be false.

Notice that we justified the conclusion by including hypothesis line
numbers with the rule of inference we used. We recommend that you
adopt this practice, too, because doing so makes it easier for the reader
to follow the logic of the argument. In a small example such as this, it
doesn’t really help, but in longer arguments it will.

The next example is almost as simple, but we need to perform some con-

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

84 CHAPTER 3. LOGICAL ARGUMENTS

versions from English to Logic.10

Example 62:

Problem: You are ready to go to bed, but see some light coming from the
other end of the hallway. That means that you forgot to turn off either
the dining room light or the kitchen light. You stick your head out the
bedroom door and see that the kitchen is dark – the kitchen light is off.
How are you able to conclude that the dining room light is on?

Solution: It’s tempting to answer, “Because the kitchen light’s not on,
duh!” While it’s true that the kitchen light isn’t on, that fact alone does
not explain the source of the light. We need to construct a valid and
completely justified argument from the given hypotheses, showing that
the conclusion is true if the hypotheses are.

First step: Identify the hypotheses and conclusion. In other words, what
do we know and what do we hope to show? We know that the dining
room light is on or the kitchen light is on. We also know that the kitchen
light is off. We hope to show that the dining room light is on. These
statements will be easier to work with if we give their component propo-
sitions labels, remembering that the fact that the kitchen light is off is
not a third proposition, but rather the negation of the second:

d : The dining room light is on
k : The kitchen light is on

We can re-write our hypotheses and conclusion as logical expressions
using these labels:

Hypotheses:
“the dining room light is on or the kitchen light is on” ⇒ d ∨ k
“the kitchen light is off” ⇒ ¬k

Conclusion:
“the dining room light is on” ⇒ d

How can we show that the conclusion follows from those hypotheses?

10Bet you wished you’d never have to do that again! Like it or not, it’s a necessary step
in many arguments, not to mention proofs.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

3.3. RULES OF INFERENCE FOR PROPOSITIONS 85

Table 14 includes a rule of inference that fits our situation: Disjunctive
Syllogism. In fact, it fits so well that it completes the argument all by
itself. All we have to do is write out the argument with our adornments:

(1) d ∨ k [Given]
(2) ¬k [Given]
(3) ∴ d [1, 2, Disjunctive Syllogism]

If you are particularly attentive, you may be concerned that the order of
the labels in our first proposition is the opposite of the order used in the form
of disjunctive syllogism in Table 14. That is, in the table, we have p∨q and ¬p,
meaning that the negation of the left operand is true. In the example, we have
d∨k and ¬k, where the negation of the right operand is true. This really isn’t
a problem. Disjunctive syllogism says that if we have an inclusive disjunction
and one of the operands of this disjunctions is false, the other must be true.
It doesn’t matter which one is false, because inclusive-OR is commutative.
If this implicit step bothers you, you can add a line to the argument that
commutes the disjunction (and uses ‘Commutativity of Disjunction’ to justify
it) before applying disjunctive syllogism.

Similarly, we could have listed ¬k as line (1) and d∨ k as line (2) without
causing any trouble. Disjunctive syllogism would still be applicable because
the hypotheses are being ANDed together (see Definition 19), and conjunction
is also commutative.

Example 63:

Problem: What is wrong with this valid argument?

If seven is larger than eight, then seven minus eight is a positive
number. Seven is larger than eight. Therefore, seven minus eight
is a positive number.

Solution: There’s nothing wrong . . . with the argument! It’s a perfectly
lovely valid argument, as the following demonstrates:

s : Seven is larger than eight
m : Seven minus eight is a positive number

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

86 CHAPTER 3. LOGICAL ARGUMENTS

(1) s→ m [Given]
(2) s [Given]
(3) ∴ m [1, 2, Modus Ponens]

If we assume the hypotheses to be true, the conclusion logically follows,
thanks to modus ponens. If you were thinking that s’s offensive lack of
truth invalidated the argument, you were thinking about a sound argu-
ment, where the hypotheses need to be true. In valid arguments, we can
indulge flights of fancy.

Ready for a more complex argument?

Example 64:

Problem: Your car is parked facing the sun. You do not have a wind-
shield sun shade. When your car is facing the sun without a sun shade,
the steering wheel is in the sun. The steering wheel is hot, or it is not in
the sun. Is the steering wheel hot?

Solution: It certainly seems reasonable that the steering wheel is hot,
but we need to show how to reach that conclusion from the given infor-
mation and our knowledge of logic.

As always, the first step is to identify and label the propositions, re-
membering to stay positive so as not to hide any negations:

f : The car is facing the sun
s : The car has a sun shade
w : The steering wheel is in the sun
h : The steering wheel is hot

Next, express the hypotheses and conclusion in logic notation:

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

3.3. RULES OF INFERENCE FOR PROPOSITIONS 87

The car is facing the sun ⇒ f
The car has no sun shade ⇒ ¬s
When the car faces the sun without a sun

shade, the steering wheel is in the sun ⇒ (f ∧ ¬s)→ w
The steering wheel is hot or is not in the sun. ⇒ h ∨ ¬w
The steering wheel is hot ⇒ h

Now the fun starts: We need to see what new truths we can uncover
from the hypotheses; hopefully, h will be one of them. One way to ap-
proach this task is to start with what we’re given and see where it leads
us. Hopefully, it will lead us close enough to the conclusion that we’ll be
able to see how to complete the argument.

Looking at the third hypothesis, we can see how modus ponens can be
used to establish the truth of w, if we knew that f ∧ ¬s were true. Ah,
but we can show that, from the first two hypotheses!

(1) f [Given]
(2) ¬s [Given]
(3) f ∧ ¬s [1, 2, Conjunction]
(4) (f ∧ ¬s)→ w [Given]
(5) w [3, 4, Modus Ponens]

Great . . . but does knowing the truth of w help? The fourth hypothe-
ses includes a ¬w; can that help? It almost fits the form of disjunctive
syllogism, but not quite. Maybe we can find a logical equivalence that
can help . . . Ah! The ‘something ORed with the negation of something
else’ form appears in the Law of Implication:

(6) h ∨ ¬w [Given]
(7) ¬w ∨ h [6, Commutativity of ∨]
(8) w → h [7, Law of Implication]

(Again, many people would not include line 7 in the argument, but you
can’t go wrong by including it.)

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

88 CHAPTER 3. LOGICAL ARGUMENTS

At this point, you can probably see how to finish it off: Applying modus
ponens to lines 5 and 8 shows that h is true. Here’s the complete argu-
ment:

(1) f [Given]
(2) ¬s [Given]
(3) f ∧ ¬s [1, 2, Conjunction]
(4) (f ∧ ¬s)→ w [Given]
(5) w [3, 4, Modus Ponens]
(6) h ∨ ¬w [Given]
(7) ¬w ∨ h [6, Commutative Laws]
(8) w → h [7, Law of Implication]
(9) ∴ h [5, 8, Modus Ponens]

Yes, the steering wheel hot, and we have explained why.

There’s lots to say about Example 64:

1. A complete argument is frequently constructed of many small argu-
ments. Here, we built our argument from two rules of inference and
two logical equivalences.

2. Each use of a rule of inference or a logical equivalence created a new
(derived) hypothesis that helped move us to our goal. Remember, both
logical equivalences and rules of inference produce an expression that we
can assume to be true.

3. Numbering the lines of the argument helps!

4. We used modus ponens twice in that one argument. Re-using rules of
inference and logical equivalences in the same argument is fine.

5. Some people like to list all of the givens at the start of the argument (i.e.,
the g givens appear on lines 1 through g), while others prefer to write
them into the argument just before they are needed (as we demonstrated
here). Either approach is fine.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

3.3. RULES OF INFERENCE FOR PROPOSITIONS 89

6. It’s not uncommon to reason your way into a dead-end – an expression
that doesn’t show any sign of helping you reach your conclusion. Don’t
panic! Back up a step or two, and look through your rules of inference
and logical equivalences again. You might find another option that will
turn out to be more helpful.

7. Not every desired conclusion can be reached from every initial set of
hypotheses. Example arguments in textbooks are usually (though not
always) constructed to work.

The argument in Example 64 used a “top-to-bottom” technique. We can
also build arguments “bottom-to-top,” as the next example demonstrates on
the same set of hypotheses and the same conclusion.

Example 65:

Problem: Can you construct a different argument based on the hypothe-
ses of Example 64 that reaches the same conclusion?

Solution: Definitely! The more complex the argument, the more ways
there will be to reach the conclusion (assuming that reaching the conclu-
sion is possible, of course).

We have the same hypotheses and desired conclusion, repeated here for
convenience:

Hypotheses: f
¬s
(f ∧ ¬s)→ w
h ∨ ¬w

Conclusion: h

This time, let’s start at the conclusion. Can we see a way to reach h
from the hypotheses? h appears only in the fourth hypothesis. We’d
noted in Example 64 that disjunctive syllogism didn’t quite fit that hy-
pothesis, but it’s not hard to make it fit. The structure of disjunctive
syllogism needs one of the operands in the disjunction to be ‘combined’
with its negation. As we need to keep h, we need to combine ¬w with
its negation. The negation of ¬w is ¬¬w, which (by double negation)

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

90 CHAPTER 3. LOGICAL ARGUMENTS

is equivalent to w. Thus, if we can show that w is true, we can apply
double negation and disjunctive syllogism to show the truth of h. This is
how the argument will end:

(n− 4) w [we hope!]
(n− 3) ¬¬w [n− 4, Double Negation]
(n− 2) h ∨ ¬w [Given]
(n− 1) ¬w ∨ h [n− 2, Commutative Laws]
(n) ∴ h [n− 3, n− 1, Disjunctive Syllogism]

Now, how can we establish the truth of w? Well, why not the same way
we did it in Example 64? We could, but we’ve been there and done that
– let’s be different. We can apply the law of implication to (f ∧¬s)→ w,
producing ¬(f ∧ ¬s) ∨ w. We already know f ∧ ¬s is true. This is set
up perfectly for disjunctive syllogism, giving us a final argument that is
almost completely different than that of Example 64:

(1) (f ∧ ¬s)→ w [Given]
(2) ¬(f ∧ ¬s) ∨ w [1, Law of Implication]
(3) f [Given]
(4) ¬s [Given]
(5) f ∧ ¬s [3, 4, Conjunction]
(6) ¬¬(f ∧ ¬s) [5, Double Negation]
(7) w [2, 6, Disjunctive Syllogism]
(8) ¬¬w [7, Double Negation]
(9) h ∨ ¬w [Given]
(10) ¬w ∨ h [9, Commutative Laws]
(11) ∴ h [8, 10, Disjunctive Syllogism]

The final argument is two steps longer than the one developed in Ex-
ample 64, but is just as correct, and correctness is more important than
brevity.

We’ve already mentioned that people often leave out commutativity as a
step in arguments, assuming that the concept is so basic that it doesn’t need
to be stated. People often assume the same with double negation. Even if

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

3.4. RULES OF INFERENCE FOR PREDICATES 91

you’re not required to include them, remember that your arguments will be
more complete – and easier for people to follow – with those steps in them.

To finish this section, let’s fulfill a promise by (finally!) completing the
argument introduced in Examples 55 and 58.

Example 66:

Problem: Which additional hypotheses must be assumed true to conclude
that you don’t need to pick up a piece of dropped bread, assuming that
if you have a dog and you dropped the piece of bread on the floor, you
don’t need to pick it up?

Solution: If you followed the recent argument examples, this should be
easy. Here are the labels introduced in Example 58:

d : You have a dog
b : You dropped a piece of bread on the floor
n : You need to pick up that piece of bread

To reach the conclusion (¬n) from the one known hypothesis ((d ∧ b)→
¬n), we can use modus ponens . . . if we could assume that d ∧ b is true.
Thus, the answer to the question is: The hypotheses d and b must both
be assumed to be true. Here’s the complete argument:

(1) d [Given]
(2) b [Given]
(3) d ∧ b [1, 2, Conjunction]
(4) (d ∧ b)→ ¬n [Given]
(5) ∴ ¬n [3, 4, Modus Ponens]

And now you know why that puddle of slobber is in the middle of your
kitchen floor and a very attentive dog is sitting next to you with a hopeful
look on its face.

3.4 Rules of Inference for Predicates
The eight rules of inference from the last section can be applied to predicates
just as easily as they can be applied to propositions. The following example’s

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

92 CHAPTER 3. LOGICAL ARGUMENTS

argument is that of Example 62, but using predicates instead of propositions.

Example 67:

Problem: Restate the argument from Example 62 using predicates in-
stead of propositions.

Solution: Converting propositions to predicates isn’t too difficult. The
general concept expressed by the proposition becomes the predicate, and
the ‘subject’ is generalized to be the variable. In Example 62, there’s just
one concept, that of a light being on. Thus, our single predicate is:

L(x) : x is on, x ∈ Lights

The argument involves two specific lights: Those of the dining room
and the kitchen. Those lights will be constants passed to the predicate to
be used to express the hypotheses and conclusion. Here’s the re-written
argument:

(1) L(dining room) ∨ L(kitchen) [Given]
(2) ¬L(kitchen) [Given]
(3) ∴ L(dining room) [1, 2, Disjunctive Syllogism]

This application of disjunctive syllogism is correct because “L(dining room)”
and “the dining room light is on” are just two ways of supplying the same in-
formation; that is, two ways of saying the same thing. We think that using
predicates when they aren’t needed (as in this example) is a bad idea. The
predicates add a layer of abstraction and additional syntactic clutter without
supplying any benefit. Don’t use predicates unless you have to.

3.4.1 Four Rules of Inference for Quantified Expressions

When might you need predicates in an argument? We introduced predicates
in Chapter 2 because quantifiers apply to variables and predicates accept
variables. Should we need to employ a rule of inference that depends on a

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

3.4. RULES OF INFERENCE FOR PREDICATES 93

quantifier, we won’t have any choice but to express the argument in terms of
predicates.

Such rules of inference are not hypothetical. There are four such rules
for quantified expressions, two per quantifier, that you may find useful in
arguments. Table 15 lists them.

Table 15: Rules of Inference for Quantified Expressions

Name Argument

(1) Universal Instantiation ∀x P (x), x ∈ D
∴ P (d), d ∈ D

(2) Universal Generalization P (d) for every d ∈ D
∴ ∀x P (x), x ∈ D

(3) Existential Instantiation ∃x P (x), x ∈ D
∴ P (d) for some d ∈ D

(4) Existential Generalization P (d) for some d ∈ D
∴ ∃x P (x), x ∈ D

3.4.2 Using Quantified Expressions in Arguments

Example 68:

Problem: Bicycle Repair Man is Mr. F. G. Superman’s secret identity.11

Mr. Superman is a Briton. Does there exist at least one Bicycle Repair
Man who is also a Briton?

Solution: It seems very likely that the answer is ‘yes,’ but how do we
know? Is this the right place for an argument?12

Our desired conclusion is an existentially-quantified expression, so we
need to use predicates to construct the argument. Let’s use these . . .

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

94 CHAPTER 3. LOGICAL ARGUMENTS

R(x) : x is Bicycle Repair Man, x ∈ People
B(x) : x is a Briton, x ∈ People

. . . to express our hypotheses (R(F. G. Superman) andB(F. G. Superman))
and desired conclusion (∃x(R(x) ∧B(x))). With all of that in place, the
argument itself is straight-forward, thanks to existential generalization.
Note that we’ve shortened Mr. Superman’s name to get the table rows
to be of reasonable lengths:

(1) R(F. G. S.) [Given]
(2) B(F. G. S.) [Given]
(3) R(F. G. S.) ∧B(F. G. S.) [1, 2, Conjunction]
(4) ∴ ∃x(R(x) ∧B(x)), x ∈ People [3, Existential Gen.]

Yes, there is a Briton who is Bicycle Repair Man, to the relief of bi-
cyclists all across England.

You might be wondering why we didn’t have a binary predicate (e.g.,
“S(x, y) : The secret identity of x is y”), instead of R(x), so that we could
represent the secret identities of many people. We certainly could have, but
as we only needed to worry about one superhero, we didn’t a more flexible
predicate.

Example 69:

Problem: If Alice knows how to swim, so does Bob, but Bob doesn’t
know how to swim. Create an argument demonstrating that the state-
ment “Someone knows how to swim” is false.

Solution: The first word (‘someone’) of the desired conclusion makes
it clear that we need a predicate covering the ability of a person to swim.
Less clear is how far-reaching ‘someone’ should be – all people or just
Alice and Bob? As it’s quite a jump from Alice and Bob to every human,

11See the Bicycle Repair Man sketch from Episode 3 (“How to Recognise Different Types
of Trees From Quite a Long Way Away”) of Monty Python’s Flying Circus.

12“I’ve told you once.” ,

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

3.4. RULES OF INFERENCE FOR PREDICATES 95

we’ll assume the set of size two. As a convenience, we use D to label the
domain set {Alice, Bob}.

We need just one predicate with which to express our two hypotheses
and single conclusion:

Predicate: S(x) : x knows how to swim, x ∈ D

Hypotheses: S(Alice)→ S(Bob) (If Alice can swim, Bob can swim)
¬S(Bob) (Bob can’t swim)

Conclusion: ¬∃x(S(x)), x ∈ D (No one can swim)

There’s a clear first step here: Apply modus tollens to the two hypotheses
to show that Alice can’t swim. This means that they both can’t swim, or,
stated another way, everyone in our small domain cannot swim. That’s
not quite what we were asked to show, but an application of generalized
De Morgan’s laws will get us the rest of the way:

(1) S(Alice)→ S(Bob) [Given]
(2) ¬S(Bob) [Given]
(3) ¬S(Alice) [1, 2, Modus Tollens]
(4) ¬S(Alice) ∧ ¬S(Bob) [2, 3, Conjunction]
(5) ∀x(¬S(x)), x ∈ D [4, Universal Generalization]
(6) ∴ ¬∃x(S(x)), x ∈ D [5, Gen. De Morgan’s Laws]

Line (4) isn’t strictly necessary; we could justify the universally quan-
tified statement directly from lines (2) and (3). But, as universal quan-
tification means that the expression is true for every member of the set,
putting both ¬S(Alice) and ¬S(Bob) on the same line – showing that
every member of the domain makes ¬S() true – allows the jump to the
quantified expression be a little easier to see.

Guess what Alice and Bob’s parents will sign them up to learn this sum-
mer (besides cryptography)?13

Getting tired of writing the same domain over and over? Example 69
demonstrates one way of speeding things up: Give the domain a single-letter

13‘Alice’ and ‘Bob’ are the traditional names used by cryptographers for the people ex-
changing encrypted messages. ‘Eve’ might soon be in the class, too . . .

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

96 CHAPTER 3. LOGICAL ARGUMENTS

label. You can also write the domain once and state that it is used for the
entire answer. We’ll demonstrate this in the next example.

The first two examples in this section started with facts that, until this
chapter, we would have written as propositions, and ended with conclusions
that are quantified expressions. It’s entirely possible to start an argument
with a quantified expression and end with a thinly-disguised proposition.

Example 70:

Problem: The entire Sharma family is escaping the afternoon heat at the
mall. Everyone at the mall has sore feet. Demonstrate that Diya Sharma
has sore feet.

Solution: You know what to do first: Identify the predicates needed
to express the hypotheses and the conclusion, and then express them.

(Note: The domain of x is “People” in this solution.)

Predicates: S(x) : x is a Sharma family member
M(x) : x is at the mall
F (x) : x has sore feet

Hypotheses: ∀x (S(x)→M(x)) (You’re a Sharma, you’re malling)
∀x (M(x)→ F (x)) (You’re malling, your feet hurt)
S(Diya) (Diya’s a Sharma family member)

Conclusion: F (Diya) (Poor Diya has sore feet)

The shortest way to construct this argument is to start by combining
the two quantified expressions. We can do this with hypothetical syllo-
gism because they are both universally quantified and both have the same
domain. Add in a little universal instantiation and a pinch of modus po-
nens, and we’ve got an argument. Because we’ve already stated that x ∈
People for the entire answer, we won’t include the domain in the argu-
ment.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

3.4. RULES OF INFERENCE FOR PREDICATES 97

(1) ∀x (S(x)→M(x)) [Given]
(2) ∀x (M(x)→ F (x)) [Given]
(3) ∀x (S(x)→ F (x)) [1, 2, Hypothetical Syllogism]
(4) S(Diya) [Given]
(5) S(Diya)→ F (Diya) [3, Universal Instantiation]
(6) ∴ F (Diya) [4, 5, Modus Ponens]

For practice: Construct a second argument that also uses hypothetical
syllogism, but later in the argument. Want more practice? Make a third
argument that doesn’t use hypothetical syllogism at all. Both of these
versions will be longer than the argument given here, but validity also
matters more than brevity.

This is a good time for a reminder: Don’t overthink the context of your
arguments, just as we warned you not to overthink expressions of predicates.
Don’t worry about details such as when the Sharmas are at the mall, or if
Diya is even old enough to walk. Our purpose here is to make you comfortable
with logical reasoning. Accept the context of the example, work within that
framework, and you’ll avoid introducing irrelevant details and concerns that
will slow you down by complicating the problem unnecessarily.

Example 70 demonstrated that we can instantiate predicates to constants
(e.g., ∀x(S(x) → F (x)) to S(Diya) → F (Diya)). Often, we do not know
the names of the elements of our domains. In those situations, we can use a
placeholder symbol to represent a sample member of the domain. The next
example uses this approach.

Example 71:

Problem: All cars are not plaid or are heavy (or both). There is a car
that is plaid. Using this information, show that a heavy car must exist.

Solution: We start as usual: Define suitable predicates, and express the
hypotheses and conclusion in terms of those predicates.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

98 CHAPTER 3. LOGICAL ARGUMENTS

(Note: All domains are “Cars.”)

Predicates: P (x) : x is plaid
H(x) : x is heavy

Hypotheses: ∃xP (x) (A plaid car exists)
∀x (¬P (x) ∨H(x)) (All cars aren’t plaid or are heavy)

Conclusion: ∃xH(x) (Some car is heavy)

Time for the argument. Unlike the previous examples, we don’t have
a specific set element (that is, an identifiable car) in mind. We’ll assign
an identifier when we need to instantiate a car; we’ll say more about that
below.

(1) ∃xP (x) [Given]
(2) P (c) [1, Existential Instantiation]
(3) ∀x (¬P (x) ∨H(x)) [Given]
(4) ¬P (c) ∨H(c) [3, Universal Instantiation]
(5) H(c) [2, 4, Disjunctive Syllogism]
(6) ∴ ∃xH(x) [5, Existential Generalization]

In Line 2, we selected c to represent a plaid car (thanks to Line 1, we know
that at least one such car exists). We can use c again in Line 4 because
Line 3 is universally quantified; every car, including c, makes this expres-
sion true. We cannot stop with Line 5 because we need to match the form
of the desired conclusion; yes, the truth of H(c) means that such a car
exists, but we need the final step to conclude the argument appropriately.

Not a fan of Disjunctive Syllogism and don’t mind an extra step? Using
the Law of Implication, ¬P (c) ∨H(c) can be shown to be equivalent to
P (c)→ H(c), and then Modus Ponens can be used to show that H(c) is
true.

3.5 Fallacies
Until now, our arguments have been firmly supported by logic. Detailing
that support was a bit tedious, perhaps, but wasn’t too difficult with the
help of rules of inference and logical equivalences. Not many people have the
knowledge or the patience to verify that their conclusions follow from a logical
argument. An unfortunate consequence is that people can create – and worse,

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

3.5. FALLACIES 99

Figure 3.3: Lisa tries to explain specious reasoning to Homer in “Much Apu
About Nothing,” a seventh season episode of “The Simpsons.” Credit: Fox.

believe and act upon – invalid arguments that appear to be valid due to lack
of critical examination. Such arguments are examples of specious reasoning. specious reasoning

A noted creator of, and believer in, specious arguments is the animated
character Homer Simpson in the long-running American television series “The
Simpsons.” In the seventh season episode “Much Apu About Nothing,” in the
scene pictured in Figure 3.3, Homer and his intelligent (and surprisingly well-
educated) daughter Lisa have a conversation about the impact of a recently-
implemented bear patrol in Springfield:

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

100 CHAPTER 3. LOGICAL ARGUMENTS

Homer: Ah, not a bear in sight. The Bear Patrol must be working
like a charm.

Lisa: That’s specious reasoning, Dad.
Homer: Thank you, honey.
Lisa: By your logic I could claim that this rock keeps tigers

away.
Homer: Oh, how does it work?
Lisa: It doesn’t work.
Homer: Uh-huh.
Lisa: It’s just a stupid rock.
Homer: Uh-huh.
Lisa: But I don’t see any tigers around here, do you?
Homer: Lisa, I want to buy your rock.

Lisa is trying to demonstrate that correlation doesn’t mean causation.
While it’s true (at least for that episode) that the rock is in their neigh-
borhood and tigers are not, there is no support for the implication that the
former implies the latter. When an argument is based upon an incorrect or
unsupported inference, the argument is a fallacy.

Definition 21: Logical Fallacylogical fallacy

A logical fallacy is an argument built with an incorrect inference.

(Another name for logical fallacy is propositional fallacy.)
Be aware that there are also informal fallacies,informal fallacy those that demonstrate

less specific errors of reasoning. We mention a few famous examples of such
‘illogical’ fallacies in section 3.5.2. First, let’s cover some logical fallacies.

3.5.1 Logical Fallacies

Recall that all rules of inference are based on tautologies – when the hypothe-
ses are true, the conclusion must also be true. Fallacies are often based on
implications that mimic actual rules of inference, suggesting to the reader that
the fallacy is also logically supported.

The following examples present three common logical fallacies.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

3.5. FALLACIES 101

Affirming the Conclusion

Example 72:

Problem: Does the following argument use a valid rule of inference?

Whenever it is sunny, Rodrigo wears sunglasses. Today he’s wear-
ing a pair, therefore it must be sunny.

Solution: No, this argument doesn’t use a valid rule of inference – but the
example does seem to make sense, because why else would anyone wear
sunglasses? Actually, there are multiple reasons: The clouds are thin, it’s
windy, Rodrigo has an unsightly stye, the future’s so bright, etc.14 Any
of those can explain the wearing of sunglasses on a less–than–sunny day.

The fallacious argument of Example 72 can be expressed in logic notation
like this:

(1) s→ g
(2) g

(3) ∴ s

In this form, it looks a lot like modus ponens, but of course it isn’t. Because
this fallacy claims the truth of the hypothesis (s) by assuming the truth of
the conclusion (g), it is known by the name Affirming the Conclusion affirming the(a.k.a.
Affirming the Consequent). conclusion

But why isn’t this a valid argument? We are assuming that g is true, and
that s → g ≡ s → T is also true. The problem is that the truth of s → T
doesn’t mean that s must be true. In fact, s → T ≡ T regardless of the
value of s (T → T ≡ F → T ≡ T, by the definition of implication). We
cannot conclude anything about the truth of s from the truth of those two
hypotheses.

Another way to see that Affirming the Conclusion is a fallacy is by remem-
bering that rules of inference are based on tautologies (see subsection 3.3.1).
To show that ((s→ g) ∧ g)→ s is not a tautology, we need to find a circum-
stance in which conjunction of the hypotheses ((s → g) ∧ g) is true but the
conclusion (s) is false.

14Greetings from Timbuk3!

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

102 CHAPTER 3. LOGICAL ARGUMENTS

You could build a truth table to do this, but instead we’ll just reason it
through. For the logical AND to be true, both operands have to be true.
That means g must be true and s → g (≡ s → T) must also be true, which
it is when s is false. Thus, we’ve found a row in the truth table for which
((s → g) ∧ g) → s ≡ T → F ≡ F, demonstrating that ((s → g) ∧ g) → s
is not a tautology, and verifying that Affirming the Conclusion is a fallacy
rather than a rule of inference.

Denying the Hypothesis

Remember those word analogy questions from standardized tests of vocabu-
lary? They are often phrased like this: “This discrete math book is to fine
literature as expired vinegar is to (a) overly-sweetened soft drinks, (b) dis-
count floor wax, (c) the purest spring water, or (d) a bottle of 1787 Chateau
Margaux?”15 That question type is applicable here. We just saw that Affirm-
ing the Conclusion is much like modus ponens.denying the Similarly, the fallacy known
as Denying the Hypothesishypothesis is much like modus tollens.

Example 73:

Problem: Does the following argument use a valid rule of inference?

You don’t have a deck of cards. If you had one, you’d play poker.
So, no poker game for you.

Solution: Give yourself two demerits if you answered ‘yes’. Sounds pretty
good, though, doesn’t it? Here’s the argument in logical notation:

(1) ¬d
(2) d→ p

(3) ∴ ¬p

It’s close to modus tollens, but not close enough. If you apply the
Law of Contraposition to d→ p, you’ll get ¬p→ ¬d, giving the argument
exactly the same form as Affirming the Conclusion, and we’ve just shown
that it isn’t a valid argument.

15A bottle of which, insured for $225,000, was accidently broken by its owner while he
was showing it off to guests at a 1989 dinner in New York. Oopsie!

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

3.5. FALLACIES 103

Affirming a Disjunct

Our third logical fallacy, Affirming a Disjunct, affirming ais, as the name suggests, based
on a disjunction rather than upon an implication. disjunctIt confuses people because
it is similar to disjunctive syllogism.

Example 74:

Problem: Does the following argument use a valid rule of inference?

To graduate with a computer science degree from Wossamotta
U.,16 you need to successfully complete either Compilers or Oper-
ating Systems. You complete Compilers. Therefore, you did not
complete Operating Systems.

Solution: Shockingly, the answer is still ‘no.’ Here’s the form:

(1) c ∨ o
(2) c

(3) ∴ ¬o

The problem with this one is in the implied assumption that you must
choose exactly one of c or o to make c∨o true, when we know that there’s
a third way to make inclusive-OR true: T ∨T. That is, o could be true
or false; we cannot claim that it must be false.

For thought: Can you turn this fallacy into a rule of inference by replacing
the inclusive-OR with an exclusive-OR?

3.5.2 Informal Fallacies

When an argument has an error of reason other than a poor logical inference,
it is termed an informal fallacy. informal fallacyThere are many of these; we offer two famous
examples.

Begging the Question

You may have heard someone use a form of this phrase in conversation. For
example: “The existence of seedless watermelons begs the question: How

16Famous for having offered a football scholarship to B. J. Moose.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

104 CHAPTER 3. LOGICAL ARGUMENTS

do they reproduce?” That’s a literal interpretation of the phrase “begs the
question,” in which the speaker is imploring you to ask the suggested question.

As a fallacy, the phrase has a much different meaning: The argument’s
conclusion is assumed true rather than shown to be true.

Example 75:

Problem: What’s wrong with the reasoning used in this argument?

Ladies and gentlemen of the jury: Let’s assume that Mr. Naidoo
ate his mid-day meal of bunny chow17 on the day in question. Let
us further assume that he paid in cash, as he claims, and left a
generous tip. By his own admission, he was so sated that he didn’t
eat again until the next morning. Ladies and gentlemen, you must
agree: Mr. Naidoo ate that lunch!

Solution: You can almost believe that this was a portion of a lawyer’s con-
cluding remarks to a jury, but even though it sounds good, you shouldn’t
be convinced of the truth of the conclusion. The problem is that the jury
is asked to assume that the man ate lunch, and then to conclude that the
man ate lunch. That is, the argument has this form: . . . , p, . . . / ∴ p.

Logically, this works – having assumed p to be true, we can correctly
conclude that p is true under that assumption. But, practically, such an
argument is a waste of our time.

Begging the Question is also know as circular reasoning,circular reasoning which makes sense
given that we end up exactly where we started – our conclusion is one of our
hypotheses.

An interesting property of this argument form is that, like rules of infer-
ence, it is based on a tautology (specifically, p → p). Thus, in terms of its
structure, it’s a valid argument, just not one that justifies any new truths.
That’s why Begging the Question is considered to be an informal rather than
formal fallacy.

You may be wondering: Why is Simplification considered to be a rule of
inference when it sure as heck looks like Begging the Question in a stylish
Halloween costume? Yes, we could rewrite Simplification (p ∧ q / ∴ p) as

17A common South African dish. For humans. Ever have a stew served in a “bread
bowl?” Same thing, really.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

3.5. FALLACIES 105

p, q / ∴ p, because the notation p, q represents p ∧ q. However, the purpose
of Simplication is to justify the truth of a single operand of the compound
proposition p ∧ q after we have discovered (or have been told) that p ∧ q is
true. If we are told (or have discovered ourselves) that p is true, we don’t need
any other justification for accepting p’s truth.

No True Scotsman

This informal fallacy can be viewed as a combination of Begging the Question
and another, known as equivocation, equivocationin which the argument is based on an
expression that has multiple meanings or interpretations. Because of these
origins, the No True Scotsman fallacy isn’t a distinct fallacy, but that doesn’t
lessen its popularity, or make it less worthy of consideration.

Philosopher Anthony Flew is credited with the naming of this fallacy. His
example involves sex,18 so to remain G-rated we will present a less-offensive
version.

Example 76:

Problem: What’s wrong with the reasoning used in this argument?

Forbes was taken aback. Sitting in the local coffee house with
his wife, Isla, he had just watched a neighbor pour sugar in his
morning coffee. “No Scotsman puts sugar in his coffee,” Forbes
muttered. Isla gave him a familiar look. “Forbes, love, your cousin
Angus also takes his coffee with sugar.” Now Forbes was appalled.
“I’m telling you, no TRUE Scotsman puts sugar in his coffee!”

Solution: To see this as a form of Begging the Question, notice that
Forbes is assuming (in the face of mounting evidence to the contrary)
that no Scotsman puts sugar in coffee, yet concludes the same thing, al-
beit with an insignificant additional word and an increase in volume. It’s
also equivocal, in that Forbes intends “Scotsman” and “true Scotsman”
to have different meanings in an attempt to salvage his point.

18Simmer down! It has the word ‘sex’ in it; that’s as salacious as it gets.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

Chapter 4

Direct Proofs

At last, we are ready to begin learning about writing formal proofs. Just as
the previous chapters’ material built upon that of the chapters that preceded
them, so will this chapter’s material build upon that of its predecessors. If
you are jumping directly to this chapter and find that some ideas are difficult
to follow, please consider returning after you read about logic, quantified ex-
pressions, and arguments. A solid foundation in those topics will serve you
well as you learn to write proofs.

This chapter focuses on direct proofs, the most common variety. It also
explains proof by cases, a technique that is often used in conjunction with
direct proofs, but which is also useful with other proof techniques. At the
end, we introduce some approaches for showing that a conjecture cannot be
proven. If you are looking for indirect (a.k.a. ‘contra’) proof techniques, see
the next chapter . . . but read this one first!

4.1 The Heartbreak of Probarephobia1

We have a confession to make. Remember truth tables? Sequences of logical
equivalences? Valid arguments using rules of inference? Those are all proofs.
You’ve been soaking your brain in proofs for a few chapters already.2

1A 1960s ad campaign for Tegrin skin care products introduced the phrase “Heartbreak
of Psoriasis” to attract the attention of people with dry, itchy skin.

2A 1981 commercial for Palmolive dish-washing liquid featured a woman soaking her
fingers in a small bowl of it, in preparation for a manicure, as an illustration of how gentle
Palmolive is on your hands. The memorable phrase from Madge the Manicurist was, “You’re
soaking in it!” We thought about titling this chapter “Direct Proofs: You’ve Been Soaking
in Them!”

107

108 CHAPTER 4. DIRECT PROOFS

There are two reasons we didn’t call them proofs. The first is that the
kinds of arguments that most people think of as ‘proofs’ are less constrained,
usually more challenging to construct, and often harder to follow than are the
examples we’ve seen so far. The first two of those three justifications come with
the territory. You know more now than you did at the start of Chapter 1, and
that knowledge allows us to start working with more challenging hypotheses
and conclusions.

As for being harder to follow, that’s a problem that proof-writers can
address by writing their proofs to be readable by a knowledgeable audience.
We will try to follow that advice, which means that we will no longer justify
every step of every argument. This is necessary to keep the lengths of our
proofs manageable, and is standard practice. The content of the proofs will
contain justifications for only the less-obvious steps. We will rely on your
knowledge of logic, arguments, and the rest of your education to allow you to
fill in most of the remaining details.

The second reason for avoiding the word ‘proof’ until now: Fear. College-
bound students are advised to complete a reasonably well-defined sequence of
math classes during high school (or the equivalent), but too frequently don’t
receive a significant introduction to proofs along the way. There are many
reasons for this omission, but the consequence is what matters. Students
often end up believing that a proof is a mysterious and impossibly difficult
construct that isn’t important: “If learning to read and write proofs were
useful skills, someone would have taught them to us by now!” You’re in luck:
‘Someone’ has already started, and in this chapter ‘someone’ will continue the
job.

In an effort to show that proofs aren’t scary (and to entertain the world),
writer Ken Keeler of the American animated television show Futurama penned
an episode (“The Prisoner of Benda”) that included the full text of a proof
(Figure 4.1) showing that the effects of Professor Farnsworth’s mind-switching
machine could be reversed.3 Keeler, who earned a Ph.D. degree in applied
mathematics, wrote the proof specifically for this episode. If a proof can star
in a cartoon, you know they don’t need to be frightening.

As far as we can tell, no one has bothered to create a word for the fear
of proofs. We modestly suggest ‘probarephobia,probarephobia ’ from the Latin probare (to
show to be true, to demonstrate) and the Greek phobos (fear). There are
words for related fears – for example, ‘arithmophobia’ is the fear of numbers,

3The full text of the proof is available online; one source is http://theinfosphere.org/
Futurama_theorem

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

http://theinfosphere.org/Futurama_theorem
http://theinfosphere.org/Futurama_theorem

4.2. PROOF PRELIMINARIES 109

Figure 4.1: Futurama writer Ken Keeler’s mind restoration proof from the
episode “The Prisoner of Benda.” Credit: The Curiosity Company.

and ‘phronemophobia’ is the fear of thinking.4 – but until now none for a fear
of the content of this chapter5

4.2 Proof Preliminaries
Before we write any of these challengingly less-constrained proofs, we have
some terminology to introduce and some advice to impart.

4.2.1 Terminology

Proofs come with a handful of associated terms. If you’re like most people,
you’ve heard of them, but you’re not quite sure how they differ. We start by
distinguishing conjecture from theorem.

Definition 22: Conjecture conjecture

4Some phobia names contain words related to proofs, but describe very different fears.
‘Theologicophobia’ is the fear of theology, while ‘amathophobia’ is the fear of . . . dust.

5Suggested t-shirt and bumper-sticker slogan: Got Probarephobia? Relax; It’s a Given.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

110 CHAPTER 4. DIRECT PROOFS

A statement with an unknown truth value is a conjecture.

Definition 23: Theoremtheorem

A theorem is a conjecture whose truth has been demonstrated.

Example 77:

The existence of intelligent life elsewhere in the universe is a conjecture.6
When an extraterrestrial visitor arrives to ask us to stop littering this
corner of the galaxy with our space probes and radio waves, it will become
a theorem.

In this book, we will label as conjectures all statements we are about to try
to prove. As soon as we can successfully prove one, from that point forward
we’ll call it a theorem. If we can disprove it, it’s a disproven conjecture.disproven conjecture If we
can do neither, it remains merely a conjecture.

Now we can define ‘proof.’

Definition 24: Proofproof

A sound argument that demonstrates the truth of a theorem is a proof.

Notice that we are insisting on a sound argument, not just a valid one. We
can’t claim that we’ve demonstrated that a conjecture is true by beginning
with information we’re just assuming to be true – we need to start with truth
to establish truth.

Our last two definitions are other names for theorems. They are used
to describe theorems that are created as parts of, or extensions of, other
theorems. We will provide examples of these in section 4.3.

6And has only tenuously been accepted to exist here.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

4.2. PROOF PRELIMINARIES 111

Definition 25: Lemma lemma

A lemma is a theorem created to aid in the construction of another the-
orem.

Sometimes, while writing a proof, you reach a point where you say to
yourself, “Self, I could easily finish this proof if I knew that this statement
were true.” You start trying to prove that it is, and if you succeed, you will
have created a new theorem – a lemma – that you can use to justify a step in
your original proof. You can think of a lemma as a ‘sub-theorem,’ much as you
might create a subprogram (e.g., a method or a function) in a programming
language for the main program to invoke.

Mathematicians sometimes reserve ‘theorem’ to describe important results
and use ‘lemma’ for less significant results. In this book, we’ll be calling every
proven conjecture a theorem, reserving ‘lemma’ for situations matching our
definition.

Definition 26: Corollary corollary

A corollary is a theorem whose truth follows almost immediately from
the truth of another theorem.

The difference between a lemma and a corollary, then, is that lemmas
appear in the middle of proofs of other theorems, while corollaries appear
immediately after such proofs. They are both usually smaller results (and
usually easier to prove) than their associated theorems.

4.2.2 Proof-Writing Advice

Before we cover any proof techniques, we want to try to put you in an appro-
priate frame of mind. As we’ve mentioned, many people have a deep-seated
fear of proofs. A common manifestation of this fear is a tendency to ‘lock
up’ – to have no idea what to do, or even what to try, to move the argument
forward. This is similar to “writer’s block,” which occurs when an author
can’t decide what to write next. When you get stuck while writing a proof
and aren’t sure of the next step, try to remember these pieces of advice.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

112 CHAPTER 4. DIRECT PROOFS

1. Not all conjectures can be proven. Always ask yourself: “Does
this conjecture seem to be true?” If you have doubts, start by trying
to disprove the conjecture – that is, try to show that the conjecture is
false. Techniques for disproof are covered in section 4.4.

2. Dead-ends are expected. When writing a proof, it’s very common to
reason your way to a conclusion that doesn’t seem useful for completing
the proof. Maybe it isn’t useful, or maybe you’re just not seeing how
it can be useful. If you feel yourself getting frustrated, take a break. If
you can, take a walk. During an exam, work on another question and
come back to the proof later.

3. Choose the right tool for the job. We cover the direct proof tech-
nique in this chapter, two more techniques in the next chapter, and a
fourth several chapters later. If the technique you chose initially doesn’t
seem to be a good fit for the conjecture, try another.

4. “Mind what you have learned. Save you it can.”7 To Yoda you
listen! Any of your education in mathematics, including what you’ve
covered in this book, can be useful in proof-writing. Keep your mind
open.

5. There are multiple ways to say the same thing. Some of those
ways can be more useful than others. For example, we know that 10 | x
is true when x is a multiple of 10. But also, x% 10 = 0 and the decimal
representation of x ends in a zero when x is a multiple of 10.

6. Practice! An unfortunate consequence of standardized mathematics
curricula and standardized assessment examinations in grade school is
that students learn to expect all math problems on a given topic to look
the same and to be solved the same way. When they get to college,
they are often unprepared to be creative and to embrace flexibility, two
characteristics that proof-writing requires. The more conjectures you
examine, and the more proofs you write, the more prepared you will be.

4.2.3 Proofs of p→ q

Conjectures are written, or can be re-written, as implications. We have some
given information (the hypothesis or hypotheses) and the conclusion we hope

7Star Wars: Episode V – The Empire Strikes Back, Lucasfilm, 1980. (1980!?!)

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

4.2. PROOF PRELIMINARIES 113

to justify. We are also told the circumstances under which the conclusion
needs to be true, though sometimes we need to infer them ourselves.

Because we are proving conjectures expressible as implications, it is com-
mon to refer to them using the notation p→ q. Often, the conjecture needs to
be shown to hold over all members of a domain, such as the positive integers.
In such “for all” cases, we can use ∀x(P (x)→ Q(x)), x ∈ D instead of p→ q,
but as the idea is the same with either notation, most of the time we will stick
with the simpler p→ q when we need to use notation.

Methods of Proof

To correctly reason from the hypotheses to the conclusion, we need acceptable
proof techniques that can show the truth of conditional statements. Having
constructed proofs in the earlier chapters, there must have been at least one
underlying technique, and there was:

(a) Direct proof. direct proofOutside of textbooks, it’s safe to say that most proofs
are direct proofs. All of the logical equivalence and rule of inference
arguments we examined in the previous chapters are direct proofs. We
will revisit those, and cover additional structurings of direct proofs, in
section 4.3.

The direct proof method is also the foundation for three related proof
techniques, the first two of which are covered in the next chapter:

(b) Proof by Contraposition. proof by contrapositionAlso known as proof of the contrapositive, this
technique is a very slight variation of direct proof. It will be covered in
Section 5.1.

(c) Proof by Contradiction proof by contradictionsacrifices the definite conclusion of direct and
contraposition proofs to gain a compound hypothesis (a sacrifice which
is more useful than it may sound). This method is covered in Section 5.2.

(d) Proof by Induction, proof by inductionwhich, despite the name, has a satisfying, comfort-
food core of deduction. Proof by induction is different enough to warrant
a chapter of its own.

Many other proof techniques exist. These can all be considered to be
forms of direct proof, but they have separate names to help us keep the vari-
ations straight. We won’t have a special section for these; instead, we will
demonstrate them as we have need of them:

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

114 CHAPTER 4. DIRECT PROOFS

(e) Vacuous Proofsvacuous proof are based on the idea of vacuous truth we defined in
Chapter 1. They often appear when we have a definition of a property
in the form of an implication and try to apply the definition to a situation
in which the antecedent cannot be applied.

(f) Trival Proofstrivial proof are those in which the implication is true because the
consequent is true; that is, the truth of the antecedent is irrelevant. For
example: If I am both Batman and Superman, then 2 is even.

(g) Proof by Casesproof by cases (also known as proof by exhaustion8) applies when we
can show that the conjecture is true for every member of the domain by
testing each member individually or by testing partitions of the domain.
Proofs by cases often appear within other proof techniques, as we will
see.

(h) Constructive Proofsconstructive proof identify a member of the domain that makes an ex-
istential conjecture (that is, one that merely claims a satisfying member
exists) true. A related technique is the non-constructive proof,non-constructive proof which
manages to demonstrate that an existential conjecture is true without
ever identifying a specific example.

(i) Combinatorial proofscombinatorial proof show the number of ways to count an activity, such
as finding the number of subsets of size n of a set of size m. We won’t
see one of these proofs until the counting chapter.9

Additional proof methods exist, but this collection is enough for a discrete
mathematics book.

Content of a Complete Proof (As Far As We’re Concerned)

Everyone has their own favorite way to write a proof, and there is no single
set of proof-writing rules that pleases everyone. Here are the principles to
which we will (usually!) adhere for the proofs in this chapter, and in the rest
of the book. We reserve the flexibility to ignore them when we need to make
a point.

1. Start by writing “Proof (proof technique):” at the top of the proof.
For example: “Proof (Direct):”. This lets the reader know how you have

8Magically, at 3 a.m. on a homework due date, every proof technique temporarily shares
this name.

9You’re welcome!

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

4.2. PROOF PRELIMINARIES 115

structured your argument, allowing him or her to more easily understand
it.

2. State your hypotheses and any other given information. We don’t con-
sider this to be a necessity, but is especially helpful (both to you and to
the reader) when using a technique other than direct proof. It’s also a
good way to stave off, if not eliminate, writer’s block.

3. Make your proofs comprehensible. You’ve almost certainly had the ex-
perience of trying to read a proof in a textbook, only to mutter, “Wait
. . . where’d that come from?!?” It’s possible that you didn’t have the
knowledge or experience to immediately understand the step, but it’s
also possible that the author abbreviated the proof for publication and
lost too much detail in the process. Proofs should be clear, not cloudy.

4. Justify the less-obvious steps of your argument. Telling the reader that
x + y = y + x by commutativity of addition will help few readers, but
mentioning that eiπ + 1 = 0 is Euler’s Identity will help most anyone
who is not a math major.

5. “Declare” your variables. Ever written a program in a language that
requires the programmer to declare variables before they are used in
statements? One reason for that requirement is to help the language
translator correctly convert your statements to a lower-level representa-
tion. Similarly, telling the reader of your proof that a variable’s value
is drawn from a particular domain helps the reader understand your
argument.

6. When we wrote our logical equivalence and rules of inference arguments,
we used columnar representations. If your proof’s clarity would be en-
hanced by using such a representation, please use it. Proof-writers often
prefer to have their proofs look as much like traditional paragraphs of
text as possible, but we’ve already seen that the extra hassle of format-
ting a few columns can be well worth the trouble.

7. To show that your proof is complete, finish it by writing the word “there-
fore”, a comma, and the original conjecture. We think is this a better
way for beginning proof-writers to end a proof than are the traditional
endings of “Q.E.D.”10 or a ‘tombstone’ marker (such as ‘2’ (LATEX :

10Q, E, and D are the first letters of the words in the Latin phrase quod erat demonstran-
dum, which means “this was to be demonstrated.” “Quite easily done” is a popular sarcastic
alternative.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

116 CHAPTER 4. DIRECT PROOFS

\Box)), because restating the conjecture helps you remember what you
were trying to prove. When you are deep in the middle of an argument,
it’s easy to forget what you were arguing about in the first place.

4.3 Direct Proofs
As the name suggests, a direct proof is quite straight-forward. To prove a
conjecture of the form p→ q, we assume that the (often compound) hypothesis
(p) is true, and demonstrate that the conclusion (q) must also be true. In short:

To prove p→ q: Assume p, show q.

4.3.1 Examples of Direct Proofs

Our first direct proof example is very straight-forward, so that we can focus
on the construction of the proof rather than on the difficulty of the argument.
We will ease into every new proof technique in the same way.

Example 78:

Problem: Using a direct proof, prove this conjecture: If x and y are odd
integers, the product xy is also an odd integer.

Solution: We are told to use a direct proof. This means that we are
to assume that the hypothesis is true and show that the truth of the
conclusion must follow. Our first task, then, is to identify the hypothesis
and the conclusion. In this example, finding them is trivial, because the
conjecture is expressed in an if-then form: Our hypothesis is “x and y are
odd integers,” and our conclusion is “the product xy is an odd integer.”
The word ‘also’ doesn’t change the conclusion; it can be dropped.

We know from the math review appendix (Section A.8). that each odd in-
teger is one more than twice some integer. That is, we can say x = 2a+1
and y = 2b+ 1. Using this form of expression for odds requires the intro-
duction of the new integer variables a and b. In the proof, we’ll have to
remember to explicitly declare them to be integers.

Now that we have representations for x and y, we can multiply those
polynomials to create a representation for xy: xy = (2a + 1)(2b + 1) =

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

4.3. DIRECT PROOFS 117

4ab+ 2a+ 2b+ 1.

Having created such an expression, you might be tempted to say, “OK,
but . . . so what?” Remember what we are trying to show: That xy is
odd. We know that odds have the form 2z + 1. By factoring a 2 from
the first three terms of our xy representation, we can achieve that form:
4ab + 2a + 2b + 1 = 2(2ab + a + b) + 1. Products and sums of integers
are also integers, and so xy is an odd integer because it has the 2z+1 form.

We could prepend “Proof (Direct):” and append “Therefore, . . . ” lines
to the preceding paragraphs and call it a proof. Such a proof would be
unnecessarily wordy, even for us. Instead, we’ll condense it into a more
compact, though not minimal, version. Here’s the result:

Proof (Direct): We may assume that x and y are odd inte-
gers. Because they are odd, x and y are each one more than
twice some integer. Let those integers be a and b, and let
x = 2a + 1 and y = 2b + 1. Using those representations,
xy = (2a + 1)(2b + 1) = 4ab + 2a + 2b + 1 = 2(2ab + a + b) + 1.
This expression shows that xy can be represented as one more
than twice an integer, demonstrating that xy is an odd integer.

Therefore, if x and y are odd integers, the product xy is
also an odd integer.

This proof includes a bit more detail we will use in most proofs in this
book – in general, we won’t explain everything, but we will explain the
key steps. The issue of detail is also addressed in Example 79, below.

The proof in Example 78 needed two new variables to create the represen-
tations of x and y, not just one. If we tried to use a single variable, we’d say
that x = 2c + 1 and y = 2c + 1. By transitivity, this means that x = y. The
conjecture does not require that x and y be the same odd integer, meaning
that the proof’s representations of x and y can’t require it, either.

Example 78 demonstrated the level of detail we will use in most proofs in
this book. The next example addresses a related concern of students.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

118 CHAPTER 4. DIRECT PROOFS

Example 79:

Problem: My instructor’s exams are really long;11 I don’t have time to
write proofs with that much detail! Can I get away with writing just the
math?

Solution: Probably not, but of course that depends on your instructor.
Here’s a shortened version of the proof given in Example 78 that we feel
has an acceptable level of detail for a proof on an exam:

Proof (Direct): Let x = 2a + 1 and y = 2b + 1, x, y ∈ Zodd.
xy = (2a + 1)(2b + 1) = 4ab + 2a + 2b + 1 = 2(2ab + a + b) + 1.
This shows that xy is an odd integer.

Therefore, if x and y are odd integers, the product xy is
also an odd integer.

This form is still acceptable because it shows a logical progression from
the hypothesis to the conclusion, and includes enough detail for the reader
to accept that the conclusion follows from the hypothesis, although the
reader is expected to fill in some minor details mentally.

Note that extending the algebra through to the 2(2ab+a+ b) + 1 expres-
sion is important. If you stop with 4ab+ 2a+ 2b+ 1, you’re not showing
that xy has the form of an odd-integer, leaving the reader to wonder if
you really know how to complete the proof. Most instructors won’t give
you the benefit of the doubt on something like this. Be safe; be sure to
include enough detail to make it clear that you know what you’re doing.
The points you save will be your own.

Our next direct proof example requires a little more imagination. It’s also
rather lengthy, to make a point about how proofs are often constructed.

11The author has never heard such a comment from his students. Never happened. Not
even once. In unrelated news, rumors of the author’s selective hearing and recollection are
undoubtedly wild exaggerations.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

4.3. DIRECT PROOFS 119

Example 80:

Problem: Using a direct proof, prove this conjecture: ac > bd when
a > b > 0, c ≥ d > 0, where a, b, c, d ∈ R.

Solution: The first step is to identify the hypothesis and the conclu-
sion. This conjecture uses a “q if p” form, meaning that ac > bd is the
conclusion and the rest forms the compound hypothesis.

Next, we need to make sure we understand what the notation is try-
ing to tell us. a > b > 0 contains three individual pieces of information:
a > b, b > 0, and, by transitivity of >, a > 0. Similarly, we are given
that c ≥ d, d > 0, and c > 0. Pay close attention to the inequalities; all
of them are > except for the ≥ in c ≥ d.

We’re ready to think about the proof. We need some way to introduce
the products ac and bd. It’s tempting to say, “Well, just multiply a > b
by c > d, and we’re done!” Unfortunately, that isn’t legal; inequali-
ties are boolean expressions, and multiplication doesn’t apply to boolean
operands. We’ll have to create ac and bd another way.

Let’s start with a > b. We can try to create ac by multiplying the
left side by c, producing ac > b. But is that true? It may not be, as c
could be less than one, which could make ac less than or even equal to
b. But we’re on the right track: We need to multiply both a and b by
c to produce ac > bc. This is true because we’re multiplying both sides
by the same amount, and the direction of the inequality stays the same
because c > 0.

We can create bd in the same way: Multiplying both sides of a > b by d
produces ad > bd. Now we have to figure out how to combine ac > bc and
ad > bd. We can do this with transitivity of > if we knew that bc > ad
. . . but we don’t. We could try to prove that it is true and introduce that
result as a lemma in this proof, but before we go to that trouble, let’s
stop and think: Can we create bd from something other than a > b?

Happily, we can. We know that c ≥ d. Multiplying both sides of it
by b produces bc ≥ bd. We can use the properties of inequalities given in
the math review appendix (Appendix A) to combine ac > bc with bc ≥ bd

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

120 CHAPTER 4. DIRECT PROOFS

and show that the conclusion of ac > bd is true.

Having discovered how to show the truth of the conclusion, we can write
up the proof as a tightened version of the above discussion.

Proof (Direct): We are given that a > b, and that c > 0.
Multiplying both sides of a > b by c produces ac > bc.

We are also given that c ≥ d and b > 0. Multiplying both
sides of c ≥ d by b produces bc ≥ bd.

By the properties of inequalities, together ac > bc and bc ≥ bd
tell us that ac > bd.

Therefore, ac > bd when a > b > 0, c ≥ d > 0, where
a, b, c, d ∈ R.

Example 80 shows how easily a proof writer can encounter a dead-end in
his or her reasoning. Textbook and research paper authors rarely reveal their
dead-ends in their final proofs, making it seem that they created the proofs
correctly on the first try. As this example has shown, even a short proof can
be the result of much ‘wasted’ work.

Our next example will give us a reason to introduce a lemma. Before that,
it will require us to do some reasoning about the meaning of the conjecture.

Example 81:

Problem: Prove that the
√
x being even is sufficient to show the necessity

of x’s evenness, given that x ∈ R.

Solution: Are you tempted to say, “Yeah, I can solve this problem by
finding the guy who wrote that and making him put it into English!”?
We sympathize. But, Chapter 1 saves us from committing a satisfying
but unnecessary act of violence: We know what ‘sufficient’ and ‘neces-

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

4.3. DIRECT PROOFS 121

sary’ mean when they are used correctly. Here, we are given that
√
x is

even, and we need to show that x is even.

What does ‘
√
x is even’ give us? We know that only integers can be

even, and that the only way for a square root to be an integer is for the
argument to be a perfect square.

Let’s make this easier to think about by letting
√
x = y. Because we

are allowed to assume that
√
x is even, we can assume that y is even.

Now let’s consider x. x =
√
x ·
√
x = y · y. If we can show that y · y is

even, we will have shown that x is even, and our proof will be complete.

Showing that y · y is even requires a separate proof. Because we will
be using the theorem that results from this second proof to complete our
original proof, the evenness of y · y will be a lemma to our main proof.

That’s all fine, but let’s not get ahead of ourselves: Is y · y always even?
We are given that y is even, meaning we can represent it as twice some
integer (say, twice w). y · y = 2w · 2w = 4w2 = 2(2w2). Because we can
express y · y as twice an integer, y · y is even. And, because x = y · y, x
is even, completing the original proof.

Time to write it all up. We will start by proving the lemma (let’s call
it Lemma 81), but we will toss in a twist to the conjecture to keep it
interesting.

Conjecture: The square of any even number is also even.

Proof (Direct): Let y represent any even number. Being
even, y = 2w, w ∈ Z. y2 = (2w)2 = 4w2 = 2(2w2). This shows
that y2 is an even number.

Therefore, the square of any even number is also even.

The ‘twist’ in the above conjecture is that it isn’t in an ‘if-then’ form. We
had to re-write it that way, at least mentally, to know the hypothesis and
conclusion: If y is an even number, then y2 is also even. English-to-logic

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

122 CHAPTER 4. DIRECT PROOFS

conversions just don’t go away.

There’s something else to notice in that proof: We didn’t restrict w to
being a non-negative integer. First, the conjecture isn’t limited, meaning
that our proof shouldn’t be limited. Second, negative integers are either
odd or even, just as the positives (and zero) are. It requires no extra
effort to prove the conjecture for all evens, so why not?

At last, we can prove the original conjecture, which was: The
√
x be-

ing even is sufficient to show the necessity of x’s evenness, given that
x ∈ R.

Proof (Direct): We are given that
√
x is even. It follows from the

definition of evenness that
√
x is an integer. Let y =

√
x, y ∈ Z.

By the definition of square root, the square of the square root of
a real number is the same real number. Thus, x = (

√
x)2 = y2.

Lemma 81 shows that the square of any even number is
also even. By that lemma and the fact that y is even, we know
that y2, and thus x, is even, completing the argument.

Therefore, the
√
x being even is sufficient to show the ne-

cessity of x’s evenness, given that x ∈ R.

If the use of the variable y in both proofs of Example 81 confuses you, feel
free to use a completely different set of variables in each proof. We re-used
y because we also re-used it in the explanation at the top, to highlight the
connection between the original proof and the lemma.

For our final example, we will tie off a loose end. Earlier (in section 4.1)
we said that sequences of logical equivalences and rule-of-inference arguments
were actually proofs. Let’s see how we can re-structure one of those (specifi-
cally, Example 66 of Chapter 3) as a proof.

Example 82:

Problem: Assume that if you have a dog and you drop a piece of bread

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

4.3. DIRECT PROOFS 123

on the floor, then you won’t need to pick up the bread. Further assume
that you do have a dog, and you did drop a piece of bread on the floor.
Prove that you didn’t need to pick up the piece of bread.

Solution: We’ve already created this argument, so all we have to is write
up as we would a proof.

Proof (Direct): By the rule of inference known as Conjunction,
we know that the conjunction of “you have a dog” and “you drop
a piece of bread on the floor” is true. By applying Modus Ponens
to that conjunction and the given implication, we know that you
didn’t need to pick up the bread.

Therefore, you didn’t need to pick up the piece of bread,
assuming that if you have a dog and you drop a piece of bread
on the floor, then you won’t need to pick up the bread; assuming
that you do have a dog; and assuming that you did drop a piece
of bread on the floor.

The arguments in Chapter 3 required more given information than did our
previous direct proof examples, making this proof, especially the ‘there-
fore’ line, seem quite wordy. Worse, the proof wasn’t especially easy to
follow, as the proof’s author expected us to ‘see’ that the rules of infer-
ence were applied correctly. That was easy enough for Conjunction, but
if you hadn’t seen that argument before, would you have been confident
that Modus Ponens was used correctly based only on this presentation?
Imagine trying to read (or write!) an explanation of an application of a
messier rule of inference, such as Resolution.

When writing out an argument in English hinders comprehension more
than it helps, use an alternative. Writing arguments in columns, as we
did in Chapter refch:arguments, is perfectly acceptable in a proof, too —
remember, those arguments are also proofs. We can wrap our original
columnar argument in our usual proof trappings and create a hybrid that
will be easy to follow.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

124 CHAPTER 4. DIRECT PROOFS

Proof (Direct): Let d be ‘you have a dog,’ b be ‘you dropped a
piece of bread on the floor,’ and n be ‘you need to pick up that
piece of bread.’

(1) d [Given]
(2) b [Given]
(3) d ∧ b [1, 2, Conjunction]
(4) (d ∧ b)→ ¬n [Given]
(5) ∴ ¬n [3, 4, Modus Ponens]

Therefore, you didn’t need to pick up the piece of bread,
assuming that if you have a dog and you drop a piece of bread
on the floor, then you won’t need to pick up the bread; assuming
that you do have a dog; and assuming that you did drop a piece
of bread on the floor.

Writing out the ‘therefore’ line seems even more redundant that it al-
ready is, but we did so to stick to our form, and to get the reader’s mind
back to the English version of the conjecture.

4.3.2 Examples of Direct Proof by Cases

Not infrequently, a conjecture’s hypothesis provides so little useful information
that it is convenient to create additional information, just so that you have
a starting point for your argument. One way to do this is to partition the
set upon which the conjecture is constructed, and show that the conjecture
holds for each partition. The description of the partitioning can often be all
the additional information the argument requires.

Example 83:

Problem: Prove that n3 + n+ 2 ∈ Zeven, where n ∈ Z.

Solution: This conjecture doesn’t give us much to work with – all we
know is that n can be any integer. But what does that tell us that’s

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

4.3. DIRECT PROOFS 125

helpful? We know that integers are real numbers. We know that integers
are rational. We know that the product of two integers is also an inte-
ger. We know lots about integers, but nothing that seems useful for this
conjecture.

Then again, maybe we do know something of value: We know that every
integer is either even or odd. If we can show that n3 +n+ 2 is even when
n is even and when n is odd, we will have shown that n3 + n+ 2 is even
for all integers. Sounds like a job for ... proof by cases!

Proof (Direct): Any integer value is either even or odd. We will
show that n3 + n+ 2 is even either way.

Case 1 : Let n be even. n = 2k, k ∈ Z. n3 + n + 2 =
(2k)3 + (2k) + 2 = 8k3 + 2k + 2 = 2(4k3 + k + 1). This demon-
strates that n3 + n+ 2 is even when n is even.

Case 2 : Let n be odd. n = 2j + 1, j ∈ Z. n3 + n + 2 =
(2j + 1)3 + (2j + 1) + 2 = (8j3 + 12j2 + 6j + 1) + (2j + 1) + 2 =
8j3 + 12j2 + 8j + 4 = 2(4j3 + 6j2 + 4j + 2). This demonstrates
that n3 + n+ 2 is even when n is odd.

Therefore, n3 + n+ 2 ∈ Zeven, where n ∈ Z.

To avoid confusion, we used a different temporary variable in each case.
You can make a case12 that using the same variable for each part is like
using ‘i’ as a loop-control variable in two loops within the same computer
program, but we think that keeping the temporary variables unique is a
good idea in proofs.

In a proof by cases, each case is a mini-proof, basically a lemma. We could
treat them as lemmas, proving them individually as we did with the lemma
in Example 81. When the lemmas are as closely related as they are in a proof
by cases, it’s common practice to prove them all within the original proof.

We left the label on the proof as “Direct” because, even though we proved
the conjecture using more than one case, it’s still a direct proof: We assumed

12Sorry . . .

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

126 CHAPTER 4. DIRECT PROOFS

p (n is an integer) and showed q (n3 + n + 2 is even). If you like, you can
embellish the label to be “Direct with Cases” or “Direct, Cases.” We will just
say “Direct” because the reader will be able to see at a glance that such proofs
include cases.

Partitioning is a useful tool for understanding large sets. Example 83
made use of the even/odd partitioning of integers. Another way to partition
integers: {Z−, 0,Z+}.13 Real numbers can be partitioned into the rationals
and the irrationals. Characters in the basic Latin alphabet can be partitioned
by case (upper and lower).

Consider truth tables. Each row of a truth table represents a unique as-
signment of truth values to variables. That is, a truth table is a partitioning of
the possible assignments in which each assignment is a partition of cardinality
one. Looked at another way, a truth table is a proof by cases.

Example 84:

Problem: Prove that (p ∨ q) ∨ p is a tautology.

Solution: We used a truth table to demonstrate this in Chapter 1. We
could re-write the truth table in English to have each case be its own
short paragraph, or we could just wrap the trappings of a proof around
the truth table.

13That’s right – zero is neither positive nor negative. Some numeric representations, such
as the IEEE 754 floating-point standard, do distinguish between +0 and −0 because doing
so is sometimes scientifically useful.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

4.3. DIRECT PROOFS 127

Proof (Direct): There are four possible assignments of boolean
values to the variables p and q. The following table shows the
evaluation of (p ∨ q) ∨ p on all four:

p q p ∨ q p (p ∨ q) ∨ p
(Case 1:) T T T F T
(Case 2:) T F T F T
(Case 3:) F T T T T
(Case 4:) F F F T T

No matter how true and false are assigned to the variables,
the expression evaluates to true.

Therefore, (p ∨ q) ∨ p is a tautology.

We added the “(Case 1:),” “(Case 2:),” etc., just to highlight how cases
are used in a truth table. In general, labeling the rows of a truth table
in that fashion is not necessary.

As we’ve seen multiple times, most recently in Example 84, it’s entirely
possible for a conjecture to have multiple variables. If we can partition the
domain of one variable (as we did in Example 83), we can certainly do it for
more than one. However, there is a cost: The number of cases that need to
be considered increases, making it more likely that one of them is considered
more than once, or worse, overlooked entirely.

Example 85:

Problem: Prove that if gh is odd, then g and h are both odd.

Solution: You should recognize the situation: We aren’t given a hypoth-
esis with much useful information (and we only know how to write direct
proofs), so we need to manufacture additional information.

This conjecture deals with odd numbers, making us think that parti-
tioning g and h into evens and odds might be a good approach to try.
Because we have two variables and two partitions for each, there are at

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

128 CHAPTER 4. DIRECT PROOFS

most four cases to consider: Both g and h are even, both are odd, g is
even and h is odd, and g is odd and h is even. However, multiplication
is commutative, meaning that the last two cases are logically identical
– both represent the product of an even with an odd – leaving us with
only three cases to consider. Of those, only the ones with gh being odd
interest us, given the conjecture’s hypothesis.

Proof (Direct): Both g and h can be odd or even. We need to
consider three cases: Both g and h are even, both are odd, or one
is even and the other is odd.

Case 1 : Let both g and h be even. g = 2a and h = 2b,
where a, b ∈ Z. gh = (2a)(2b) = 4ab = 2(2ab), showing that, in
this case, gh is even. As the conjecture’s hypothesis is that gh is
odd, this case is irrelevant to the proof and can be ignored.

Case 2 : Let both g and h be odd. g = 2c+1 and h = 2d+1, where
c, d ∈ Z. gh = (2c+1)(2d+1) = 4cd+2c+2d+1 = 2(2cd+c+d)+1,
showing that gh is odd and thus fits our conjecture. For this case,
the conjecture holds (that is, when gh is odd, g and h are odd).

Case 3 : One of the variables is even and the other is odd.
WLOG, let g be even and h be odd. g = 2e and h = 2f +1, where
e, f ∈ Z. gh = (2e)(2f + 1) = 4ef + 2e = 2(2ef + e), showing
that gh is even. As with Case 1, this case can be ignored.

Of the three possible ways to assign odd and even integers
to g and h, only one fits the conjecture’s hypothesis. In that case,
the conclusion is true.

Therefore, if gh is odd, then g and h are both odd.

‘WLOG’wlog is an acronym14 for the phrase “without loss of generality,”
a common way to tell the reader that an arbitrary choice can be made
without violating the logic of the argument. In this proof, one of the
variables needed to be even and the other odd. It makes no difference
to the argument which is which, so we picked one of the two possibilities

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

4.3. DIRECT PROOFS 129

and used ‘WLOG’ to let the reader know that our specific choice didn’t
matter to the proof.

The proof in Example 85 got the job done, but it seems wasteful. We
had to consider three cases to discover that only one of them mattered. This
observation might cause you to think, “Maybe there’s an easier way to prove
this . . . ” There is, but we have yet to cover it. Don’t worry; we will, in
Example 96 of Chapter 5.

4.3.3 Detecting Poor Proofs

Seeing nothing but correct proofs can leave the impression that all proofs
are correct. Not true, of course. The history of mathematics includes many
examples of proposed proofs that turned out to be invalid arguments when
they were examined closely15 16 .

Here are three examples of poor proofs. Each demonstrates a common
mistake made in proof development. Hopefully, having seen these, you will be
less likely to make similar mistakes when writing your own proofs.

Example 86:

Problem: Prove that if 5n+ 4 is even, then n is even, n ∈ Z.

‘Solution’ : Consider this attempt at a direct proof:

‘Proof’ (Direct): Assume that n ∈ Zeven. n = 2k, k ∈ Z.
5n + 4 = 5(2k) + 4 = 10k + 4 = 2(5k + 2), which matches the
given information that 5n+ 4 is even.

Therefore, if 5n+ 4 is even, then n is even.

14A point of pedantry: ‘WLOG’ is more accurately an initialism, but acronym is also
acceptable. Be aware that, if you start using ‘initialism’ in everyday communication, you’ll
never make it as a politician. You should probably avoid ‘pedantry,’ too.

15Wikipedia has a list: http://en.wikipedia.org/wiki/List_of_incomplete_proofs
16Wikipedia is conveniently ignoring the reality that approximately 99.995% of poor

proofs were written by students on homework assignments or exams and discovered to be
invalid by incredulous teachers who used to have full heads of thick, lustrous hair.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

http://en.wikipedia.org/wiki/List_of_incomplete_proofs

130 CHAPTER 4. DIRECT PROOFS

The reasoning behind this proof is perfect, except for one huge prob-
lem: It starts by assuming that the conclusion is true! Proofs
exist to demonstrate the truth of conclusions, not to accept them as be-
ing true. The conjecture that this proof proves is the converse of the given
conjecture. That is: If n is even, then 5n + 4 is even. As we learned in
Chapter 1, p→ q 6≡ q → p. The truth of the converse says nothing about
the true of the original.

The lesson: Never assume that the conclusion is true.

A poorly constructed proof doesn’t tell us much about the conjecture.
Unfortunately, even attempting a direct proof with the correct hypothesis can
lead to a bad proof, as the next example shows.

Example 87:

Problem: Prove that if 5n+ 4 is even, then n is even, n ∈ Z.

‘Solution’ : Having learned the lesson of Example 86, we try again:

‘Proof’ (Direct): Assume that 5n+ 4 is even. 5n+ 4 = 2k, k ∈ Z.
Solving for n, we find that n = 2k−4

5 , which is . . . ummmm, wow,
not even always an integer, so it can’t always be even . . . can it?

Maybe the Deity of Partial Credit will smile upon me if I write . . .

Therefore, if 5n+ 4 is even, then n is even.

Indeed, 2k−4
5 isn’t always an integer. We started the proof correctly, and

still couldn’t prove it. That means that the conjecture is false . . . right?
Not necessarily. The problem with this proof is that it doesn’t make use
of a key piece of given information: n is an integer. This conjecture is
true; it can be proven with a direct proof that uses a little more creativity,
such as was used in Example 85.

The lesson: Heed the advice in Section 4.2.2.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

4.3. DIRECT PROOFS 131

By the way: The Deity of Partial Credit might give you some partial credit
for remembering to supply the proper conclusion to the proof, but that doesn’t
mean the proof itself will be worth much. The Deity of Partial Credit, kind
as she/he/it may be, still has standards.

Our last example of a poor proof is a variation on a classic.

Example 88:

Problem: Lots of people have trouble writing their sevens and their twos
clearly enough to make them distinct. This isn’t really a problem at all,
because, as the following proof shows, 7 = 2! Be as sloppy as you like!

‘Proof’ (Direct): Seven times two is fourteen, and let’s make it
negative to show negative numbers a little love.

−14 = −14 [Any integer equals itself]
49− 63 = 4− 18 [Strange expressions for −14]

49− 63 + 81
4 = 4− 18 + 81

4 [Add 81
4 to each side]

(7− 9
2)2 = (2− 9

2)2 [Factoring (reverse FOIL)]
7− 9

2 = 2− 9
2 [Take square root of both sides]

7 = 2 [Add 9
2 to both sides]

Therefore, 7 = 2.

Does seven really equal two? Is the number line not to be believed?
Is reasoned society doomed to collapse?

Solution: No, no, and probably.17 There’s something wrong with this
proof, the same problem that many other ‘proofs’ of impossible conclu-
sions share: The square root step. In this ‘proof,’ it is claimed that√

(2− 9
2)2 = 2− 9

2 . What most people forget about square roots is that
√
x2 = ±x = |x|. That is, x · x = −x · −x = x2. This proof quietly drops

that plus-minus sign (±, LATEX : \pm), a hidden step that breaks the
validity of the argument. If you were to finish the argument correctly,
you’d get a very boring, but correct, conclusion:

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

132 CHAPTER 4. DIRECT PROOFS

(7− 9
2)2 = (2− 9

2)2 [From the above ‘proof’]
| 7− 9

2 | = | 2− 9
2 | [Correct square roots]

| 5
2 | = | −5

2 |
5
2 = 5

2 [No surprise there]

The lesson: Check each step of proposed proofs carefully.

Square roots, logarithms, and division by zero are common sources of
logical errors in ‘proofs.’ Whenever you see someone claim that they can
prove that 0 = 1, 1 = 2, 1 = −1, or the like, check the proof for a step
involving one of those constructs. Chances are, that’s where you will find the
logical error.

4.4 Disproving Conjectures
When a conjecture ‘smells’ false, or despite your best efforts you can’t create its
proof, you should spend some time trying to demonstrate that it is false. Such
demonstrations are known as disproofs.disproof Disproofs do prove that conjectures
are false, but you won’t often see a disproof written up as a formal proof.18

4.4.1 Find a Counter-Example

By far the most common way to show that a conjecture is false is to find a
counter-example,counter-example a specific assignment of legal values to variables that demon-
strates that the conjecture is false. Sometimes a counter-example is easy to
find (they are often found at the low and high ends of domains), but often a
remarkable amount of searching is required.

Example 89:

Problem: Prove or disprove: 2n is even for all n ∈ Z∗.

17Hopefully, with the power of well-written proofs, we can delay that collapse for a while
longer. Everyone listens to reason . . . don’t they?

18Actually, you rarely see disproofs at all. Although studying failures can be very
educational, who wants to become famous for creating a failure? Some disproven con-
jectures have lingered as cautionary examples. Wikipedia has a small collection: http:
//en.wikipedia.org/wiki/Category:Disproved_conjectures.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

http://en.wikipedia.org/wiki/Category:Disproved_conjectures
http://en.wikipedia.org/wiki/Category:Disproved_conjectures

4.4. DISPROVING CONJECTURES 133

Solution: If you start by listing 2, 4, 8, 16, 32, etc., you will soon con-
clude that the conjecture must be true, because each number is double
the previous, and the first is even. But look at the domain more care-
fully: Z∗ includes zero, and 20 = 1, which certainly isn’t even. Thus, the
counter-example 20 shows that the conjecture is not true.

To write this as an answer on a homework or exam, something like this
would be fine:

Disproof (Counter-Example): Let n = 0. n ∈ Z∗, but 20 = 1 is
not even. The conjecture is not true.

That’s right – no fancy argument, just a clear statement of an exam-
ple from the desired domain that ‘breaks’ the conjecture.

Example 90:

Problem: Prove or disprove this conjecture:19 If 2k ≡ 2 (mod k), then k
is prime, k ≥ 2, k ∈ Z.

Solution: At first glance, this conjecture seems to be based on too many
coincidences to be true – the mod keeps increasing by one but the con-
gruences keep occurring. If you start looking for a counter-example, you
might find yourself believing in coincidences, because it does seem that
only when 2k ≡ 2 (mod k) is k prime: 22 ≡ 2 (mod 2), 23 ≡ 2 (mod 3),
24 6≡ 2 (mod 4), 25 ≡ 2 (mod 5), 26 6≡ 2 (mod 6), 27 ≡ 2 (mod 7), etc.

The conjecture is false, but it takes quite a bit more snooping to dis-
cover a counter-example: 2341 ≡ 2 (mod 341). 341 looks like it might be
prime, but it isn’t: 341 = 11 ·31. You’d definitely want to use a computer
to verify this counter-example: 2341 is over 100 decimal digits long!

19This is half of a biimplication conjecture, known as the Chinese Hypothesis, that never
really existed. It appears to have originated as a mis-translation of a math text, rather than
as a serious conjecture. The other half (if k is prime, then 2k ≡ 2 (mod k)) is an instance
of Fermat’s Little Theorem (not to be confused with Fermat’s Last Theorem), and is true.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

134 CHAPTER 4. DIRECT PROOFS

4.4.2 Prove the Negation

The second way to show that a conjecture is false is to prove that its negation
is true. Frequently, this is similar to finding a counter-example, but the two
approaches are not the same.

Imagine that you’re asked to prove a conjecture of the form p → q. You
try and try, but can’t do it, and so begin to suspect that it isn’t true. You
spend time looking for a counter-example, but can’t find one. Instead, you
try to prove the negation (¬(p→ q)) is true, which would show that p→ q is
false. ¬(p→ q) ≡ p∧¬q, meaning that you have to show that p∧¬q is true.
As there’s no hypothesis, a direct proof would give you nothing with which
to work, and, unless you’ve read ahead, direct proof is the only technique you
know. Even with those other techniques, proving ¬(p→ q) probably won’t be
easy.

All is not lost – proving ¬(p → q) may still be a reasonable option if you
think about what p → q represents. Back at the start of section 4.2.3 we
mentioned that in this chapter the p → q notation was a stand-in for the
more complete ∀x(P (x)→ Q(x)), x ∈ D quantified predicate notation. In the
following example, that quantified notation will be very helpful.

Example 91:

Problem: Disprove the conjecture of Example 89 (2n is even for all n ∈ Z∗)
again, this time without using a counter-example.

Solution: Let E(n) : 2n is even, n ∈ Z∗, and note that our conjecture does
not have an explicit hypothesis. That is, the conjecture can be expressed
as ∀n (T → E(n)), with the same domain. T → E(n) ≡ E(n) (by the
Law of the True Antecedent), allowing us to represent the conjecture as
∀n E(n).

To verify that ∀n E(n) is false without using a counter-example, we
need to prove that its negation (¬∀nE(n)) is true. By Generalized De
Morgan’s Laws, ¬∀n E(n) ≡ ∃n ¬E(n). In conversational English:
There’s a non-negative integer that makes 2n odd.

To prove an existential conjecture, we just need to find one member of the
domain that makes the conjecture true. We already know the member:
n = 0. All that remains is to write this up more compactly.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

4.4. DISPROVING CONJECTURES 135

Disproof (Proof of the Negation): The conjecture can be ex-
pressed as ∀n E(n), n ∈ Z∗, where E(n) represents ‘2n is even.’
Its negation is ∃n ¬E(n) (by Generalized De Morgan’s). This
negated conjecture is true, as the following proof shows:

Proof (Direct): Consider E(0). 0 ∈ Z∗ and 20 = 1. There-
fore, ∃n ¬E(n) is true.

Because it is possible for 2n to be odd, the claim that 2n is
even for all n ∈ Z∗ is false.

Please note that n = 0 is not a counter-example, because we aren’t ‘coun-
tering’ the original conjecture with it. Rather, n = 0 proves the negation
of the conjecture. Because the conjecture’s negation is an existential
statement, all we needed was an example to prove it. The proof of the
negation disproves the conjecture.

By the way, our little proof of the truth of ∃n ¬E(n) is a simple ex-
ample of a constructive proof (see section 4.2.3).

Having seen Example 91, it’s not hard to imagine this prove-the-negation
approach working on existential conjectures that we suspect are false. Imagine
you’re asked to show that ∃xA(x) is true. All you need is one example,
but try as you might, you can’t find one. Suspecting that the conjecture
is false, you look to prove its negation. By Generalized De Morgan’s Laws,
¬∃xA(x) ≡ ∀x¬A(x). The negation is universally quantified, just as are
most of the conjectures we usually need to prove, meaning that a common
proof technique (such as direct proof) might be just what we need.

Example 92:

Problem: Prove or disprove: There exists an odd multiple of four.

Solution: This conjecture is clearly false, but let’s pretend that it’s more
of a challenge.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

136 CHAPTER 4. DIRECT PROOFS

Because this is an existential conjecture, to prove it we only need one
example of an odd multiple of four to show that that conjecture is true.
Enumeration of multiples of four (. . . − 8,−4, 0, 4, 8, . . .) doesn’t help us
find one, making us think that the conjecture may be false.

To show that the conjecture is false, we can either find a counter-example
or prove the conjecture’s negation. Finding a counter-example for an ex-
istential conjecture isn’t easy, so we’ll try to prove the negation. Let
O(x) : x is an odd multiple of four.20 In logic notation, our conjecture
is ∃x O(x), where x ∈ Z. We can express its negation as a universal
quantification: ¬∃x O(x) ≡ ∀x ¬ O(x). In English: If x is a multiple of
four, it’s even. We can prove that easily.

Because the negation of the original conjecture is true, the conjecture
must be false. The following write-up is more terse than was that of Ex-
ample 91.

Disproof (Proof of the Negation): The given conjecture (an odd
multiple of four exists) is false because its negation (all multiples
of four are even) is true, as the following argument shows:

Proof (Direct): Let x be a multiple of four. x = 4k, k ∈ Z.
x = 4k = 2(2k). Therefore, all multiples of four are even.

Disproofs, even those containing proofs, don’t usually include much ex-
planation.

These disproof techniques are independent of proof techniques. We placed
the disproof section in this chapter because it makes sense to discuss disproofs
soon after proofs are introduced, not because they can only be used with
conjectures you first tried to prove with a direct proof.

20If you said to yourself, “Hey, that predicate should be expressed as multiple predicates!”,
you get an imaginary gold star. If you said that aloud in a public place, try to act like you
don’t care what other people think. To keep this example short(er), we’re cheating on the
predicate. Writing it out as multiple predicates, performing the negation, and rewriting the
result in English should produce the result given above. But why take our word for it?

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

Chapter 5

Indirect (“Contra”) Proofs

With direct proofs covered (see the previous chapter), we can consider two
proof techniques that are variations of direct proof: Proof by Contraposition
(a slight variation) and Proof by Contradiction (a not-as-slight variation).
These are sometimes known as ‘indirect’ proof techniques because they are,
well, not direct.1

5.1 Proof by Contraposition

Sometimes, a conjecture’s hypothesis doesn’t provide much useful information
with which to start a direct proof. We’ve seen that, with a little creativity,
we can sometimes extract enough information to make a direct proof possible
(e.g., Example 85 in Chapter 4). When you are faced with a conjecture whose
conclusion seems to be a better source of information than does the hypothesis,
a proof by contraposition proof by contrapositionmight be a better choice of proof technique.

The name “proof by contraposition” completely reveals the difference be-
tween it and a direct proof: Instead of proving the given conjecture as-is, we
prove its contrapositive. This technique is still logically valid because, as we
learned in Chapter 1, an implication and its contrapositive are equivalent:
p→ q ≡ ¬ q → ¬ p. And so, in a proof by contraposition:

To prove p→ q: Assume ¬ q, show ¬ p.

Other than that, everything about a proof by contraposition is the same
as for a direct proof. To make the reader’s life a little easier, start such

1Proof techniques just don’t have superhero-esque origin stories.

137

138 CHAPTER 5. INDIRECT (“CONTRA”) PROOFS

proofs with “Proof (by Contraposition):” or “Proof (Contrapositive):”, but
otherwise, you already know what do to (and what not to do!).

Proof by contraposition is sometimes referred to as a form of indirect proof,
indirect proof although that term is most frequently applied to proof by contradiction (see

Section 5.2). The term fits here because we aren’t simply assuming p and
showing q. Proofs by contradiction are even less direct, which is probably
why most people reserve the term to describe that technique.

Because proofs by contraposition are very similar to direct proofs, we will
give just two examples, enough to highlight the utility of the technique.

Example 93:

Problem: Prove that if a− b is an irrational number, then a is irrational
or b is irrational, where a, b ∈ R.

Solution: To use a direct proof here, we need to know something use-
ful about irrational numbers as a starting point for the argument. We
know that any real number that isn’t expressible as a ratio of integers is
irrational, but that doesn’t seem like much of a starting point for a direct
proof. However, it can be useful in a proof by contraposition, because us-
ing contraposition means introducing negations, and a real number that
is not irrational is rational – and something we can easily represent.

In a proof by contraposition, we will need to assume the negation of
the original conclusion and show the negation of the original hypothesis.
Let’s start with the original conclusion: “a is irrational or b is irrational”.
The disjunction appears to be inclusive (there are no linguistic clues to the
contrary). By one of De Morgan’s laws, its negation is “a is rational and b
is rational”. We can work with that. Our new conclusion, the negation of
the original hypothesis, is “a−b is rational”. That also seems manageable.

Actually, it’s more than just manageable; it’s quite straight-forward, as
is the entire proof: We will represent a and b as ratios of integers and
use basic algebra to demonstrate that their difference is also a ratio of
integers.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

5.1. PROOF BY CONTRAPOSITION 139

Proof (Contraposition): We are assuming that a and b are both
rational numbers. We need to show that their difference (a − b)
is also a rational number.

Rational numbers can be expressed as ratios of integers. Let a = c
d

and b = e
f , where c, d, e, f ∈ Z. a− b = c

d −
e
f = cf

df −
de
df = cf−de

df ,
which is a ratio of integers. Thus, a− b is a rational number.

Therefore, if a − b is an irrational number, then a is irra-
tional or b is irrational, where a, b ∈ R.

The value of stating the assumed information is greater in contrapos-
itive proofs than in direct proofs, because, having had to rewrite the
hypotheses and conclusions, mistaking the old for the new is a potential
problem. Writing out the contrapositive’s hypothesis and conclusion can
help prevent that problem from occurring. We won’t usually state the
new assumption and conclusion as plainly as we did here, but we do rec-
ommend the practice.

Please notice that we concluded the proof by restating the original con-
jecture, not its contrapositive equivalent. The reason for this is that we
were asked to show the truth of the original conjecture. It is appropriate
to end by stating that we have shown what we were asked to show.

The next example shows a problem that can occur if one is too eager to
attempt a direct proof, and how trying a different proof technique can avoid
the problem.

Example 94:

Problem: Prove that if y2 + y ≤ xy + x, then y ≤ x, x, y ∈ R.

Solution: If your mind is open to contrapositives, you’ll look at this
conjecture and see that it fits that form very nicely. If you’re still locked
into direct proofs, you might look at the hypothesis and notice that y+ 1
can be factored from both sides, leading to this straight-forward but in-

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

140 CHAPTER 5. INDIRECT (“CONTRA”) PROOFS

valid argument:

‘Proof’ (Direct):

y2 + y ≤ xy + x [Given]
y(y + 1) ≤ x(y + 1) [Factoring]

y ≤ x [Divide both sides by (y + 1)]
Therefore, y ≤ x.

Do you see the error in the reasoning? If not, spend a few minutes
thinking about it before moving onto the next paragraph.

There are actually two problems, one more immediate than the other.
The immediate problem is with the division. x and y, we were told, can
be any real numbers. −1 is a real number, and when y = −1, moving
from the second line to the third is a division by zero.

The less-immediate problem got overlooked in our rush to choose a proof
technique: Multiplying (or dividing) both sides of an inequality by a neg-
ative number changes its direction. This conjecture is not true for nearly
all negative reals.

Time to fix these problems. So that we have something provable, let’s
change the domain to the positive reals (that is, x, y ∈ R+).2 The new
domain eliminates the division by zero concern, meaning that we could
use the direct proof. We’ll do it with contraposition anyway, so that you
can compare the techniques.

Proof (Contraposition): Assume that y > x. We need to show
that y2 + y > xy + x.

y > x [Given]
y(y + 1) > x(y + 1) [Multiply both sides by (y + 1)]
y2 + y > xy + x [Multiply through]

Therefore, if y2 + y ≤ xy + x, then y ≤ x, x, y ∈ R+.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

5.2. PROOF BY CONTRADICTION 141

Using a proof by contraposition allows us to start with a simple hypothe-
sis and build toward the conclusion. This ‘simple-to-complex’ progression
is often the most straight-forward way to develop an argument.

Final note: Are you thinking that we should be assuming y ≥ x instead
of y > x? If so, you’re forgetting that the negation of ≤ is >.

5.1.1 Disproofs and Contraposition

Just as there’s no special connection between direct proofs and disproofs,
there’s also nothing special about disproving conjectures that initially ap-
peared to be good candidates for proof by contraposition. The techniques
presented in the previous chapter (Chapter 4) are still the ones to use.

5.2 Proof by Contradiction

In Chapter 3 we presented example dialog that mentioned ‘reductive’ rea-
soning. We deferred discussion of it to this chapter because well-structured
reductive reasoning is also known as proof by contradiction. proof by contradictionThe idea is easy
to state but harder to explain: We assume that the conclusion is false and
reason until we reach a logical contradiction.

At first read, that statement might seem like a big pile of shhhh. . .aving
cream,3 but it is entirely logical. Here’s how it turns out to be a valid argu-
ment.

Proof by contraposition works because the contrapositive of the conjecture
is logically equivalent to the conjecture. It’s tempting to look through our
tables of logical equivalences from Chapter 1 to see if there are any others that
look promising. The Law of Implication seems simple enough, but it turns an
implication into an inclusive-OR. There are three ways for an inclusive-OR
to be true (that’s three cases to have to prove), plus we lose the conclusion.
Simple, but not very helpful.

2Does it feel like we’re cheating by changing the problem? If this were a homework or
exam, of course we wouldn’t change it; rather, we’d ask if there’s a typo or if a disproof is
acceptable. We’re trying to make a point about thinking before doing, and to demonstrate
proof by contradiction. Having learned about disproofs in the last chapter, you should be
able to disprove this conjecture with its original domain. Give it a try!

3Be nice and clean! Shave every day and you’ll always look keen! (Apologies to Benny
Bell, author of the 1946 song “Shaving Cream.”)

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

142 CHAPTER 5. INDIRECT (“CONTRA”) PROOFS

Another promising equivalence is p → q ≡ (p ∧ ¬q) → F, known as
reductio ad absurdum. There’s no inclusive-OR to worry about, and we still
have a conclusion . . . but it’s just ‘false.’ How can we reason toward ‘false?’
We learned two ways in Chapter 1: Use a truth table that shows all inputs
evaluating to ‘false,’ or create a logical equivalence argument that ends at
‘false.’ Either way, we demonstrate a contradiction.4 In a more free-form proof,
like those of this chapter, we can accomplish the same thing by reasoning until
we discover a result (say, x) that is the opposite of something we already know
(x). Both x and x cannot be true. Assuming that we started with the correct
compound hypotheses (p ∧ ¬q), and that our reasoning was logical, arriving
at a contradiction (that is, arriving at F) means that the original conjecture
must be true, by reductio ad absurdum.

Here’s another way to look at how a proof by contradiction works. Start
with a basic conjecture: p→ q. We believe it to be true, otherwise we wouldn’t
be trying to prove it. That means we believe ¬(p → q) to be false. Because
¬(p → q) ≡ ¬(¬p ∨ q) ≡ ¬¬p ∧ ¬q ≡ p ∧ ¬q, we must also believe p ∧ ¬q
to be false. If we reason starting from p ∧ ¬q and encounter a contradiction,
as long as our reasoning was good, the only part of the argument that could
have been false was the assumption, and therefore its opposite – the given
conjecture p→ q – must be true.

Still not really buying it? We understand; this isn’t easy for most people
to follow the first time, or the second, or maybe even the nineteenth. Keep
thinking about it; if you followed the logic behind proof by contraposition,
you can get your mind around proof by contradiction, too. At a minimum,
we’re confident that you understand why proof by contradiction is also known
as indirect proof!

In the meantime, take a look at that assumption again: p ∧ ¬q. To be
allowed to assume both p and ¬q, imagine that we made a deal with the Deity
of Arguments.5 The Deity of Arguments was sympathetic to our need for
more given information, and was willing to help, but, needing to save face
with the other deities, required something in return: We had to sacrifice the
conclusion in exchange for more given information. Having accepted this deal
with the deity, our fate is to reason blindly until we stumble upon some sort
of contradiction – we have no idea when or where it will appear.6

4Contradiction . . . proof by contradiction . . . coincidence? Yeah, right.
5Yes, a relative of the Deity of Partial Credit; naturally, they’re both from the same

pantheon: The one from which no big-budget action movie will ever be made.
6For the sake of your grade on a future quiz or exam, if asked to explain the logical

justification for a proof by contradiction, don’t answer “The Deity of Arguments gave it to
us!” We gave you two lovely, serious explanations; answer using one of those instead.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

5.2. PROOF BY CONTRADICTION 143

For many people, proof by contradiction’s lack of a clear target makes
applying it a significant challenge. Other people really take to it, to the point
that proof by contradiction is their first choice whenever a proof is needed. If
you find that proof by contradiction really ‘sings’ to you, try to remember to
use it only when it makes sense to do so.

That’s a key question: When does it make sense to use a proof by con-
tradiction? Direct proofs are useful when p gives enough information. Proofs
by contraposition are useful when ¬q gives enough. If neither p nor ¬q give
enough by themselves, perhaps their combination (p∧¬q) does. That’s when
a proof by contradiction may be the best choice.

In summary:

To prove p→ q: Assume p ∧ ¬q, show a contradiction.

To show how and when to use a proof by contradiction, we have three
examples. The first one is pretty simple . . .maybe too simple.

Example 95:

Problem: Prove that if a% 3 = 1 and b% 3 = 2, then 3 | (a+ b).

Solution: First things first: We need to remind ourselves what the no-
tation is trying to tell us. a% 3 = 1 means that a is one more than a
multiple of three. Similarly, b% 3 = 2 means b is two more (or one less)
than a multiple of three. 3 | (a+ b) means that a+ b is exactly a multiple
of three.

To prove this by contradiction, we assume a% 3 = 1, b% 3 = 2, and
3 - (a+ b) (the negation of 3 | (a+ b)). 3 - (a+ b) means that a+ b isn’t
a multiple of three; that is, (a+ b) % 3 is either one or two.

If you’re thinking, “Wait; ‘either one or two?’ Doing this by contra-
diction seems to be making this harder, not easier!”, you’re forgiven. As
usual, we chose this example to demonstrate the proof technique and to
make a point.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

144 CHAPTER 5. INDIRECT (“CONTRA”) PROOFS

Proof (Contradiction): Assume that a% 3 = 1, b% 3 = 2, and
3 - (a+ b). Because a is one more than a multiple of three, we can
represent a with 3k + 1, where k ∈ Z. Similarly, we will represent
b with 3j + 2, where j ∈ Z.

a + b = (3k + 1) + (3j + 2) = 3k + 3j + 3 = 3(k + j + 1).
This shows that a + b is a multiple of three; that is, 3 | (a + b).
However, we assumed that 3 - (a + b). No value can both be and
not be a multiple of three; this is a contradiction.

Therefore, if a% 3 = 1 and b% 3 = 2, then 3 | (a+ b).

Although our discussion ahead of the proof made it seem that things
were going to get messy (“(a + b) % 3 is either one or two”), we didn’t
need to reach that level of detail in the proof. Sometimes, the preparation
is worse than the proof.

Speaking of messes, here’s the point we want to make about proving the
conjecture of Example 95 using contradiction: We really don’t need an indi-
rect proof to do it; a direct proof will work just fine. (For practice, create
one!) Some snooty proof experts will tell you that it’s not appropriate to
use contradiction when the resulting contradiction is with one of the givens.
Unfortunately, it can be hard to see that that will occur before you write
the proof. We aren’t that snooty; we’re happy to accept the contradiction
whenever and wherever we find it.

Example 96:

Problem: One of our example conjectures in Chapter 4 (“if gh is odd,
then g and h are both odd” from Example 85) required us to consider
three cases when we did it with a direct proof. Would doing it with a
proof by contradiction be easier?

Solution: This is the sort of question that’s good to ask yourself when
you’re working on a homework assignment (but not-so-good to ponder
during an exam!). You’ve completed a proof, and you could turn it in

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

5.2. PROOF BY CONTRADICTION 145

. . . but that annoying voice in the back corner of your brain is telling you
that you can do better. Let’s humor that voice and see if we can do better
with a proof by contradiction.

Using contradiction, we get to assume that “gh is odd” is true, and also
that the negation of “g and h are both odd” is true. But what is that
negation? It’s tempting just to flip ‘odd’ to ‘even,’ but that’s not the
correct negation. “g and h are both odd” is a short-cut way of saying
“g is odd and h is odd.” To negate that, we need to haul out one of
De Morgan’s Laws. The resulting negation is “g is even or h is even.”
Thus, we can assume g is even and h is odd, or g is odd and h is even,
or that both g and h are even. As with Example 95, this is starting to
sound like a lot of work. Maybe it will be, maybe it won’t; there’s one
sure way to find out: Try it!

Proof (Contradiction): Assume that gh is odd, and that g is even
or h is even (or both). If only one variable is even, it doesn’t
matter which one, because we are going to create the product
gh and multiplication is commutative. If both are even, we can
again assume that either one is even. WLOG, let g be even and
equal to 2k, k ∈ Z. gh = (2k)h = 2(kh), by associativity of
multiplication. This shows that gh must be even, a contradiction
of our assumption that gh is odd.

Therefore, if gh is odd, then g and h are both odd.

This is much shorter than the direct proof we created for this conjecture.
It’s so short that, by comparison, you might be worried that something’s
wrong with it. There isn’t; the brevity can be attributed to the use of a
more appropriate proof technique.

Actually, it could be quite a bit shorter. In many textbooks, authors
would skip the justification ahead of the ‘WLOG,’ leaving that for the
readers to puzzle out on their own. In a class in which you are learning
to write proofs, be safe and include the justification. Now, if we wanted
to make the proof longer,7 we could have considered all three cases sep-
arately, much as we did in the direct proof. Thanks to our knowledge of
multiplication, there was no need to do that.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

146 CHAPTER 5. INDIRECT (“CONTRA”) PROOFS

Example 96 shows how choosing the appropriate proof technique can save
time. Even so, it isn’t a ‘classic’ proof by contradiction, because it contradicted
a piece of assumed information. The next example is even better, because the
conjecture would be very difficult to prove with another technique.

Example 97:

Problem: Prove that log3 4 is irrational.

Solution: This is another conjecture not in ‘if – then’ form. There’s
a good reason for that: There isn’t a specific hypothesis, just the desired
conclusion. For such conjectures, a proof by contradiction is often a good
choice, because it allows us to use (the negation of) the only available
piece of information as our starting point.

We know that a real number that is not irrational is rational. We will
represent log3 4 with a fraction, and use our knowledge of logarithms to
take us to a contradiction.

7Why?!? For the love of the Deity of Arguments, why?

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

5.2. PROOF BY CONTRADICTION 147

Proof (Contradiction): Assume that log3 4 is rational. Let
log3 4 = n

d , where n, d ∈ Z+. By the relationship between
logarithms and exponents, we can rewrite this as 3n/d = 4.
Raising both sides to the power of d gives (3n/d)d = 4d, which
means 3(n/d)·d = 4d, or 3n = 4d.

Observe that log3 4 is more than one (because log3 3 = 1
and log is an increasing function) and less than two (log3 9 = 2).
This means that n > d > 1, and thus n− 1 and d− 1 are integers
that are ≥ 1.

3n = 3n−1 · 3, which is an odd times an odd. We learned,
in Example 78 of Chapter 4, that the product of two odds is odd.
4d = 4d−1 · 4, which is an even times an even. The project of two
evens must be even ((2k)(2j) = 2(2kj)). Because 3n is odd and
4d is even, 3n 6= 4d. This contradicts the earlier observation that
3n = 4d.

Therefore, log3 4 is irrational.

We have several things to say about the proof of Example 97.

• This proof is a good example of how ‘classic’ contradiction proofs work:
We reasoned for a while and discovered something (3n = 4d). Then, we
reasoned some more on a different fact and discovered a contradictory
piece of information (3n 6= 4d). Neither of those were given to us; we
had to uncover them ourselves.

• You probably noticed that we snuck8 in a mini-lemma to show that the
product of two evens is even. It would be more proper to have a separate
lemma to show this, but as we’re now quite familiar with manipulating
evens and odds, we decided to use a short-cut.

8‘Sneaked’ is considered to be better for formal writing than is ‘snuck.’ Since when has
this book been an exemplar of formal writing?

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

148 CHAPTER 5. INDIRECT (“CONTRA”) PROOFS

If you’re wondering why we didn’t just reference the lemma from Ex-
ample 81 in Chapter 4, note that it specifically covers only the case of
an even number times itself, not the case of an even times a potentially
different even. They are closely related, but are not the same. It would
be appropriate to say that the evenness of an even times itself is a corol-
lary of the evenness of an even times an even, but our examples weren’t
set up in that order.

• The proof’s little digression into the characteristics of n− 1 and d− 1 is
the sort of discussion that most proofs would assume the reader could
figure out on their own. We decided to include it because (a) when
exponents are negative, we leave the realm of integers (and therefore of
evens and odds), and (b) showing that d − 1 ≥ 1 meant that we didn’t
have to worry about 40 · 4 (an odd times an even).

• Tired of evens and odds? Want a different way to reach a contradiction?
We could have used this approach for the last half of the proof: The only
factors of 3n are powers of 3, and the only factors of 4d are powers of 4.
Because n and d are greater than zero, there’s no way for 3n to equal
4d.

• Are you wondering if we could have used a proof by contraposition in-
stead? Yes, we could have, but we would have created a proof by con-
tradiction wearing a proof by contraposition costume. Here’s what we
mean: As we know, in a proof by contraposition of p→ q, we assume ¬q
and show ¬p. We weren’t given a hypothesis, which means p ≡ T (we
could have written the conjecture as “if true, then log3 4 is irrational”).
In a proof by contraposition, then, we’d get to assume that log3 4 is
rational (just like the proof by contradiction) and would need to show
false (again, just like the proof by contradiction). Might as well just do
a proof by contradiction!

5.3 Proving Biconditional Conjectures

Most of our conjectures have been (or could be) expressed as “for all” impli-
cations. So far we’ve ignored another kind of “for all” conjecture that can also
be expressed as implications: Biconditionals. Happily, proving a biconditional
does not require another proof technique. Unhappily, proving a biconditional
requires that we construct two proofs.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

5.3. PROVING BICONDITIONAL CONJECTURES 149

We hope you remember that a biconditional is defined in terms of impli-
cation and AND: p↔ q ≡ (p→ q) ∧ (q → p). This equivalence tells us what
we must do to prove a biconditional:

To prove p↔ q: Prove both p→ q and q → p.

Be aware that you may “mix-n-match” proof techniques when proving a
biconditional; that is, you may use a different technique for the “if” half than
you used for the “only if” half. Of course, using the same technique for both
halves is fine.

To construct a proof of a biconditional conjecture, we have two choices:

1. Write separate, stand-alone proofs of p → q and q → p, and refer to
them as lemmas in the (very short) proof of p↔ q.

2. Include the proofs of p → q and q → p as cases within the proof of
p↔ q.

We have two examples of biconditional proofs, one for each option.

Example 98:

Problem: Prove that s and t are odd iff st is odd.

Solution: We have already done most of the work for this proof. Ex-
ample 78 proved “if x and y are odd, then xy is odd,” and Example 85
proved the “if gh is odd, the g and h are odd.” All we need to do is
reference those results as lemmas within our proof of the biconditional.

Proof (Direct): In Example 78, we proved the “only if” half (s
and t are odd only if st is odd). In Example 85, we proved the
“if” half (s and t are odd if st is odd). Together, these lemmas
complete the proof of the biconditional.

Therefore, s and t are odd iff st is odd.

Of course, much of the time we need to prove both halves. The next
example shows how to handle this situation.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

150 CHAPTER 5. INDIRECT (“CONTRA”) PROOFS

Example 99:

Problem: Prove that a2 + 2a+ b2 − 6b+ 10 = 0 iff a = −1 and b = 3.

Solution: The “if” half of this is easily proven – we just plug in the
given values for a and b and verify that the result is zero.

The “only if” direction requires more imagination. It’s tempting to do a
little re-arranging (a2 + 2a+ b2− 6b+ 10 = a(a+ 2) + b(b− 6) + 10), but
that doesn’t seem helpful (how will that tell us what a and b must be?).
Instead, we might look at a2 +2a and b2−6b and think about completing
the squares by finding a way to divide up the 10 between them. This
occurs to us because the form x2 + yx+ z is familiar to us, and because
specific values for a and b remind us of roots of quadratics. The source
of a2 + 2a could be (a + 1)2: (a + 1)2 = a2 + 2a + 1. That leaves 9 for
b2 − 6b, and happily b2 − 6b+ 9 = (b− 3)2.

We’ve learned that a2 + 2a+ b2 − 6b+ 10 = (a+ 1)2 + (b− 3)2. Now we
need a convincing argument that the only way for (a+ 1)2 + (b− 3)2 to
equal zero is for a to be −1 and for b to be 3. We know that the square
of any real will be non-negative, which means that the only way to get a
sum of zero is 0 + 0. The only way for (a + 1)2 to equal zero is for a to
be −1, and the only way for (b− 3)2 to equal zero is for b to be 3. We’ve
got our argument.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

5.4. SUMMARY OF DIRECT AND INDIRECT PROOF TECHNIQUES151

Proof (Cases): To prove the biconditional we need to prove the
two component conjectures individually.

Case 1 : We use a direct proof to show that a2+2a+b2−6b+10 = 0
if a = −1 and b = 3.

Replacing a and b with the given values, we find that (−1)2+
2(−1) + (3)2 − 6(3) + 10 = 1 − 2 + 9 − 18 + 10 = 0. Thus,
a2 + 2a+ b2 − 6b+ 10 = 0 if a = −1 and b = 3.

Case 2 : We use a direct proof to show that a2+2a+b2−6b+10 = 0
only if a = −1 and b = 3.

a2 + 2a + b2 − 6b + 10 = a2 + 2a + 1 + b2 − 6b + 9 = (a +
1)2 + (b− 3)2. As x2 is ≥ 0 for any real number x, the only
way for (a + 1)2 + (b − 3)2 to equal 0 is for (a + 1)2 = 0
and (b− 3)2 = 0. The roots of these quadratics are −1 and
3, respectively, establishing that a = −1 and b = 3. Thus,
a2 + 2a+ b2 − 6b+ 10 = 0 only if a = −1 and b = 3.

Therefore, a2 + 2a+ b2 − 6b+ 10 = 0 iff a = −1 and b = 3.

In a biconditional proof, our preferred “Proof (technique)” label can be
more awkward than helpful, because we could use one proof technique for
the “if” and another for the “only if.” As each case is a separate proof, it’s
reasonable to mention the technique at the start of each case, and to say at
the top that we’re doing a proof by cases, as we did here. But, as we used
direct proofs in both cases, we could have used our usual format instead.

5.4 Summary of Direct and Indirect Proof
Techniques

Figure 5.1 summarizes the three major proof techniques covered in the past
two chapters.

The algorithm given in Figure 5.2 offers suggestions for choosing a proof
technique. This algorithm is not meant to be inflexible; it has value in that
in can help novice proof-writers decide how to begin. Remember, false starts

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

152 CHAPTER 5. INDIRECT (“CONTRA”) PROOFS

(Assume) (Show)
Proof Technique Hypothesis Conclusion
Direct p q

Contraposition ¬q ¬p
Contradiction p ∧ ¬q A Contradiction

Figure 5.1: The three major proof techniques, their starting points, and their
destinations.

If the conjecture (p→ q) appears to be true,

If p provides useful information,
Try a direct proof

Otherwise, if ¬q provides useful information,
Try a proof by contraposition

Otherwise,
Try a proof by contradiction

Otherwise,

If the conjecture is universally quantified,
Try disproving it with a counter-example

Otherwise,
Try disproving it by proving its negation

Figure 5.2: An initial proof technique selection algorithm.

are common in proof-writing. What appears to be a good starting point for a
proof may not be upon closer examination. Also, remember that not all proofs
are of conjectures of the p → q form. For instance, the conjecture might be
existential, for which a single confirming example will prove that it is true.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

Chapter 6

Additional Set Concepts

Appendix A presents the basics of sets, including notations, operators, and
visualizations with Venn diagrams. This chapter assumes that you know that
material. If you are feeling a lack of confidence in your knowledge of, for
example, set builder notation or the set difference operator, please review
that section before continuing.

6.1 What is So Important about Sets?
A good working knowledge of sets is essential in the study of discrete struc-
tures. We will define relations, and soon after, functions, in terms of sets. Re-
lational database management systems (RDBMSes) are based on set theory.
The concept of finite probability is defined by the ratio of two set cardinal-
ities. If you know data structures such as arrays and linked lists, you likely
recognize that they are representations of collections – often sets – of values.

Beyond this class, you may find yourself studying topics in theoretical
computer science. Many of those ideas are defined using sets.

Example 100:

Problems in computing that can be solved by performing a quantity of
operations that is related polynomially to the size of the problem are
known as polynomial-time (P) problems. Many sorting algorithms have
this property. For example, insertion sort’s quantity of operations per-
formed is proportional to n2 in the worst case, where n is the number of
values being sorted.

153

154 CHAPTER 6. ADDITIONAL SET CONCEPTS

Problems whose solutions can be verified (just checked for correctness,
not necessarily discovered) in polynomial time are known as NP (non–
deterministic polynomial time) problems. Again using sorting as an
example, we can easily check that a list of values is sorted using a quantity
of operations that can be described by a linear function. Because linear
functions are polynomial, sorting is an NP problem as well as a P problem.

Are all problems in both sets? That is, are the two sets equal? No
one knows; it’s arguably the most important open question in computer
science. Computer scientists and mathematicians are pretty sure these
sets are not equal; we just haven’t been able to prove it (or disprove it).

Why, then, are we pretty sure? Because we know of hundreds of prob-
lems for which no efficient solution (that is, no polynomial-time solution)
is known. One example is the partitioning problem. Consider the set of
integers {1, 3, 4, 5, 6, 9, 12}. Can these values be divided into two subsets
such that all of the values are included and the sums of the values in each
subset are equal? The answer is ‘yes,’ both {1, 3, 4, 12} and {5, 6, 9} have
values whose sums are 20. This probably doesn’t sound like a very hard
problem, and it isn’t when the quantity of values is very small, because
we can easily enumerate all possible subsets. But imagine that you had
to find two such subsets from a set of cardinality 500. The only known
algorithm that is guaranteed to find a solution, if one exists, is the algo-
rithm that enumerates all possible subsets. As we will see when we cover
counting, the number of possible subset pairs is exponential, not poly-
nomial, in the cardinality of the original set. For that set of cardinality
500, you’d have to examine a ridiculous quantity of subsets.1 The lack of
a better algorithm probably means that this a hard problem.

6.1.1 Sets vs. Logic

Set theory, like proof theory, is frequently considered to be part of mathemat-
ical logic because set theory is built on a foundation of logic. As such, much

1Specifically, 2500−1 − 1 = 1, 636, 695, 303, 948, 070, 935, 006, 594, 848, 413, 799, 576, 108,
321, 023, 021, 532, 394, 741, 645, 684, 048, 066, 898, 202, 337, 277, 441, 635, 046, 162, 952, 078,
575, 443, 342, 063, 780, 035, 504, 608, 628, 272, 942, 696, 526, 664, 263, 794, 687. See what hap-
pens when you waste time reading footnotes?

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

6.1. WHAT IS SO IMPORTANT ABOUT SETS? 155

of what we will learn about sets has direct parallels with the material we have
already covered in Chapter 1. In fact, in this chapter we will spend a fair
amount of time explaining how set operators can be defined using logic, and
how set identities can be proven using logic.

Thus, it would be incorrect to say that set theory and first-order logic
are competitors. They are two systems of expression and reasoning that are
closely related. If you are coming into this chapter feeling confident that its
content will be easier to follow than the logic chapters because sets already
make sense to you, great! Hopefully, the connections we will make between
sets and logic will help you understand logic even better, without destroying
that warm, fuzzy feeling you have for sets.

6.1.2 Limitations of Sets

Set theory, like logic, doesn’t provide the tools necessary to describe everything
we might like to describe. This admission shouldn’t cause you to lose faith in
mathematics in general and computer science in particular. It’s clear that the
foundations of these fields of study are useful, because computers do work,
we are able to launch satellites into orbit, etc. But, just as screwdrivers and
hammers are both useful tools for different tasks, set theory is most useful for
what it is designed to describe.

Where does set theory start to lose its usefulness? The next example
exposes a classic difficulty in basic (a.k.a. fundamental, naive) set theory that
is also a good example of a paradox, paradoxa statement that contradicts itself, usually
in a mind-boggling way.

Example 101:

Consider a men’s football team with one player who is a barber. The
coach insists that every man be clean-shaven; that is, no player has a
moustache or a beard. The barber happily shaves all of the players —
but only those players — who do not shave themselves. Who shaves the
barber?

That doesn’t sound hard to answer: He shaves himself, of course. But
consider the conditions of the question again. The barber isn’t allowed to
shave himself; remember, he shaves the players who do not shave them-
selves. Thus, the barber must shave himself (he can’t go to the barber;
he is the barber!) but cannot shave himself (the barber shaves only those

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

156 CHAPTER 6. ADDITIONAL SET CONCEPTS

Figure 6.1: “My brain hurts!” Credit: Monty Python’s Flying Circus, Season
3, Episode 6 (“The War Against Pornography”), “Gumby Brain Specialist.”

players who do not shave themselves).

This is known in set theory as the Barber Paradox, and is the standard
example used to illustrate the more formal Russell’s Paradox, raised by
logician Bertrand Russell in 1901 as a demonstration of a problem with
basic set theory. We know that we can have a set of sets; that is, a set
can be a member of a set. Consider the idea of a set that is not a member
of itself. Now let’s create a collection of such sets: Let S be a set of the
sets that are not members of themselves. Is S a member of itself? If it is
not (that is, if S 6∈ S), then by its definition S must be ∈ S. But if S is a
member of itself (S ∈ S), the definition is violated. The realization that
S must both be and not be a member of itself is the paradox. In logic:
S ∈ S ↔ S 6∈ S, where S = {s | s 6∈ s}.

How’s your brain doing? Happily, there’s a solution to Russell’s Paradox:
Adopt a more restrictive view of sets, such as an ‘axiomatic’ set theory. Es-
sentially, an axiomatic set theoryaxiomatic set theory is one that adds a group of axioms (‘ground

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

6.2. LOGICAL REPRESENTATION OF BASIC SET OPERATORS 157

rules’) to the basic set ideas so that problems like Russell’s Paradox can no
longer arise. For our purposes, knowing that there is a solution to such prob-
lems is enough.2

6.2 Logical Representation of Basic Set Operators

Expressing set operators using logical notation may seem to be a purely in-
tellectual exercise. After all, we can use the operators just fine given their
descriptions in English. Without the logic, though, proving set properties that
use those operators requires exhaustive enumerations, much like the truth ta-
bles we used to prove logical identities. By expressing set operators in logic,
we can employ the logical identities we’ve already proved (or could prove if
necessary), hopefully saving time and effort.

6.2.1 Logical Representations of Union, Intersection,
Difference, and Complement

All four of the set operators union (∪), intersection (∩), difference (−), and
complement (2) accept a set or two as operands and produce a set as their
result. To represent them in logic, then, we need a notation that allows us to
describe their behavior with logic but produce a set. Fortunately, we already
have one: Set-builder notation (see A.3.1).

Let’s start with union. In Appendix A, we described the union of two sets
as being “a binary operator that combines the elements from the two operand
sets into a single result set.” Thus, an element is in the result if it is found in
the first operand set or the second operand set. Because an element found in
both operand sets is included in the result, we need an inclusive OR. That’s
all we need to know to express union logically:

A ∪B = {c | c ∈ A ∨ c ∈ B}
Intersection can be expressed almost exactly the same way. To be in the

result, an element must be in the first operand set and the second:
D ∩ E = {f | f ∈ D ∧ f ∈ E}

Remembering which logical operator pairs with each of these set operators
is easy. Operators that open in the same direction go together: ∩ goes with
∧ (both open to the bottom) and ∪ goes with ∨ (both open to the top).

Difference requires a little more thought to express in logic. Difference
‘keeps’ all of the elements of the first operand set, unless the element is also

2If you would like to read about a specific example of an axiomatic theory of sets, look
up “ZFC” (Zermelo-Fraenkel set theory with the Axiom of Choice).

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

158 CHAPTER 6. ADDITIONAL SET CONCEPTS

found in the second set. That is, an element is in the result set when it is a
member of the first set and not a member of the second:

G−H = {i | i ∈ G ∧ i 6∈ H}
Complement is the only unary operator of this group, which makes it the

easiest to express in logic. The complement of a set is the set of all of the
other elements in the universe; that is, everything not in the operand set:

J = {k | k 6∈ J}
At this point, you may be wondering if set membership itself can be –

should be! – expressed logically, too. After all, it can easily be viewed as a
predicate. In practice, we think of set membership as a concept of sets, rather
than an operation on a set. As such, we don’t consider it to be an operator,
though we use it like one.

6.2.2 A New Set Operator: Cartesian Product

A very useful set operator, Cartesian Product pairs up elements of its operand
sets. Before we can define Cartesian Product, we need to understand how to
combine set elements into an ordered pair.

Definition 27: Ordered Pairordered pair

An ordered pair (denoted “(a, b)”) is a two-element pairing of set elements
in which position matters.

The word “ordered” is important, as Example 102 demonstrates.

Example 102:

Let S = {4, 6, 2}. (2, 4) is an ordered pair of elements from S.

(4, 2) is a different ordered pair of A’s elements. That is, (2, 4) 6= (4, 2).
This distinguishes ordered pairs from sets of cardinality two, where order
doesn’t matter: {2, 4} = {4, 2}.

Now we can define Cartesian Product in terms of ordered pairs.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

6.2. LOGICAL REPRESENTATION OF BASIC SET OPERATORS 159

Definition 28: Cartesian Product cartesian product

The Cartesian Product of two sets L and M , denoted L ×M (LATEX:
\times), is the set of all possible ordered pairs (l,m) such that l ∈ L and
m ∈M .

In logic: L×M = {(l,m) | l ∈ L ∧m ∈M}

This definition is limited to just two operand sets. We can generalize the
idea to work with more than two operands, and will soon. However, to start,
we’ll stay within this definition.

Example 103:

Problem: Compute {K,Q} × {♣,♦,♥,♠}.

Solution: We need to pair each element of the first set with each element of
the second, in that order, to form all of the ordered pairs of the result set.
The result: {(K,♣), (K,♦), (K,♥), (K,♠), (Q,♣), (Q,♦), (Q,♥), (Q,♠)}

Note that this shows us a way to define the common French deck of 52
playing cards as a set of ordered pairs: {A,K,Q, J, 10, 9, 8, 7, 6, 5, 4, 3, 2}×
{♣,♦,♥,♠}.

When enumerating the result of a Cartesian Product manually, it is impor-
tant to be systematic, so that no ordered pairs are missed or are duplicated.
Counting the quantity of ordered pairs generated and comparing that sum
against the fact that |L × M | = |L| · |M | can detect simple errors. Con-
tinuing Example 103, we can verify that our French deck must consist of
|{A,K,Q, J, 10, 9, 8, 7, 6, 5, 4, 3, 2}| · |{♣,♦,♥,♠}| = 13 · 4 = 52 ordered pairs
(a.k.a. cards).

Example 104:

Problem: Compute ∅ × {1, 2}.

Solution: To create an ordered pair, we need one element from each

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

160 CHAPTER 6. ADDITIONAL SET CONCEPTS

operand set. As the empty set has no elements, there can be no ordered
pairs. Thus, ∅ × {1, 2} = ∅.

As mentioned above, although we won’t have a lot of need for it in this
book, computing Cartesian Products of more than two sets, or, equivalently, of
sets of ordered pairs, is a straight-forward extension of the two-set definition.
The results are sets of n-tuples (ordered lists of n elements each).

Example 105:

Problem: Compute {a, b} × {∞} × {3, 5}.

Solution: The result is {(a,∞, 3), (a,∞, 5), (b,∞, 3), (b,∞, 5)}. Let’s see
how to compute this one Cartesian Product at a time.

We work left to right. The result of the first operator is as expected:
{a, b} × {∞} = {(a,∞), (b,∞)}.

Before computing the second operator’s result, it’s helpful to think of
{3, 5} as being a set of 1-tuples: {(3), (5)}. That’s what it really is;
we don’t ordinarily include the parentheses because there aren’t multiple
values for them to group together. But, adding the parentheses makes it
easier for us to see that we are creating the Cartesian Product of a set of
2-tuples with a set of 1-tuples, which will form the set of 3-tuples listed
above: {(a,∞, 3), (a,∞, 5), (b,∞, 3), (b,∞, 5)}.

In general, the idea of Example 105 is called an n-ary Cartesian Product.

Definition 29: n-ary Cartesian Productn-ary cartesian product

The n-ary Cartesian Product of n sets S1 through Sn, S1×S2× . . .×Sn,
produces the set of n-tuples {(s1, s2, . . . , sn) | si ∈ Si}.

The quantity of n-tuples in the resulting set is the product of the cardi-
nalities of the n operand sets: |S1 × S2 × . . .× Sn| = |S1| · |S2| · . . . · |Sn|.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

6.3. SOME USEFUL SET CONCEPTS 161

You’re probably wondering: “Why isn’t the result of Example 105 written
as {((a,∞), 3), ((a,∞), 5), ((b,∞), 3), ((b,∞), 5)}?” That is another way to
view things, but it’s not how the generalization of Cartesian Product is defined.
This is a practical choice: In a later chapter, we’ll see that n-tuples (and n-
ary Cartesian Products) are used by relational database systems to store (and
process) data. This isn’t to say that the concept of ordered n-tuples that
contain other ordered n-tuples doesn’t have uses; it does (for example, see
nested lists in the programming language Scheme), but they aren’t as common
in set theory.

6.3 Some Useful Set Concepts

Appendix A introduced the idea of set membership. Earlier in this chapter we
said we’ll consider set membership to be a concept rather than an operator,
even though it could be viewed as an operator. There are other set concepts
that must be understood in order to use sets, and much of the rest of this
book, effectively. In this section we introduce them. We won’t call any of
these concepts operators, either, although cases could be made for many of
them.

6.3.1 Subsets

Imagine a class of students. Some of them will end the term with the highest
grade allowed by the school. That group may be considered a subset of the
original set of all of the students in the class, because it contains only students
that are members of that set of students. Sounds simple enough, but what if
no student earns that highest grade? Is that set (the empty set) considered a
subset of the class? And what if all of the students earn that grade? Is the
class a subset of itself? Such extreme cases are why there are two definitions
of ‘subset’ for us to learn.

Definition 30: Subset subset

Set N is a subset of set O (denoted N ⊆ O, LATEX: \subseteq) when
every element of N is also an element of O. Equivalently, O is a superset
of N (O ⊇ N , LATEX: \supseteq).

In logic: N ⊆ O ≡ ∀p (p ∈ N → p ∈ O), p ∈ U

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

162 CHAPTER 6. ADDITIONAL SET CONCEPTS

This definition deserves some explanation. First, notice that the logical
expression for subset doesn’t use set builder notation. This is because the
‘result’ of subset is a logical value (true or false) instead of a set: Either N is
a subset of O or it isn’t. This explains why we use ≡ instead of =; sets can
be equal but logical expressions are equivalent.

Time to start considering those extreme cases. The definition doesn’t
directly address them, but we can infer how they are handled. Let’s start
with the situation in which N = O. Is N ⊆ O? That is, is a set a subset of
itself? Clearly, yes. The definition says that N is a subset of O when all of
N ’s content is found within O. This is certainly the case when the sets have
the same content.

Now consider the other extreme, when |N | = 0 (that is, N = ∅). Is ∅ ⊆ O
true? Yes! The empty set has no elements. Vacuously, all of its elements are
found within O. For this reason, the empty set is considered to be a subset of
any set, even itself.

We’ll see some examples after we introduce the other subset definition:
proper subset.

Definition 31: Proper Subsetproper subset

Set Q is a proper subset of set R (denoted Q ⊂ R, LATEX: \subset) when
Q ⊆ R but Q 6= R. Equivalently, R is a proper superset of Q (R ⊃ Q,
LATEX: \supset).

In logic: Q ⊂ R ≡ ∀s (s ∈ Q→ s ∈ R)∧ ∃t(t 6∈ Q∧ t ∈ R),where s, t ∈ U

(Be aware that some people use the symbol((LATEX: amssymb’s \subsetneq)
for proper subset.)

The difference in meaning between ⊆ and ⊂ is simple (a set is a subset of
itself but not a proper subset of itself), but expressing that difference logically
takes some work. To show that two sets Q and R are not equal, we say that R
has an element that Q does not. We say it that way in this definition because
|Q| < |R| when Q ⊂ R.

People sometimes have trouble keeping the meanings of ⊆ and ⊂ straight.
This observation usually helps: Think of the symbol ⊆ as the result of the
merging of the symbols ⊂ and =. This justifies the inclusion of the single

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

6.3. SOME USEFUL SET CONCEPTS 163

horizontal line in the symbol for subset, and reminds us that the idea of set
equality is included in the definition of subset.

Example 106:

The following table shows the similarities of and differences between the
subset operators:

S T S ⊆ T? S ⊂ T?
(a) {1, 2} {1, 2, 3} true true
(b) {4, 5} {5} false false
(c) {6} {6} true false
(d) ∅ {7} true true
(e) ∅ ∅ true false
(f) {∅} {∅, 8} true true

The examples of line (d) follow from the fact that the empty set is con-
sidered to be a subset (and proper subset) of any non-empty set. Line
(e) mirrors line (c); as with any other set, the empty set is a subset but
not a proper subset of itself. Line (f) is included to make the point that
sets can contain other sets, even the empty set, as elements, and when
they do, the subset definitions don’t change. That is, in line (f), you
could replace the two occurrences of ∅ with another set, say {9}, and the
results would be the same.

6.3.2 Set Equality

Set equality sounds like a concept that’s so basic that it should have been
covered back in Appendix A. We saved it for this chapter because its definition
can be so easily expressed using the idea of subset.

Definition 32: Set Equality set equality

Sets V and W are equal (denoted V = W) iff V ⊆W and W ⊆ V .

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

164 CHAPTER 6. ADDITIONAL SET CONCEPTS

We aren’t providing the logical version of equality because it’s a straight-
forward application of the logical construction of subset.

Example 107:

Let S = {7, 15, 16} and T = {16, 7, 15}. Applying the set equality defini-
tion, we see that S = T because both S ⊆ T and T ⊆ S are true.

We can reach the same conclusion by inspecting the set elements. Despite
the different orderings of the elements, S and T have the same cardinality
and contain the same elements. The subset-based definition is more gen-
erally useful than is the inspection approach. For example, it will serve
as the foundation of set equality proofs by cases in Section 6.4.2.

Example 108:

Problem: Let A = ∅ and B = {∅}. Does A = B?

Solution: No, because these are different sets with different cardinali-
ties: |A| = 0 (the empty set has no elements) and |B| = 1 (the empty set
is the only element of B).

6.3.3 Power Sets

A companion idea to subset is that of power set.

Definition 33: Power Setpower set

The power set of a set S (denoted P(S), LATEX: \mathcal{P}), is the
set of all of S’s subsets.

There are a variety of symbols that are used to represent a power set, but
this calligraphic ‘P’ is the most commonly used today.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

6.3. SOME USEFUL SET CONCEPTS 165

Remember that the empty set is a subset of any set, making the empty
set an element of any set’s power set. Also remember that the definition of
power set is based on the definition of subset, not of proper subset, meaning
that the set itself is another member of the power set.

Example 109:

Problem: Let A = {e, f, g}. What is P(A)?

Solution: Computing power sets is one of those activities that attracts
silly mistakes like a kitchen floor attracts the buttered side of toast. To
reduce the chance of an error, be systematic when listing the subsets:
Start with all of the subsets of size 0, then list those of size 1, etc., ending
with those of size |A|.

There is just one subset of size 0: The empty set. There are |A| = 3
subsets of size 1: {e}, {f}, and {g}. There are also three subsets of size
2: {e, f}, {e, g}, and {f, g}. Finally, the set itself is the only subset of
size 3. Thus, P(A) = {∅, {e}, {f}, {g}, {e, f}, {e, g}, {f, g}, {e, f, g}}.

A tidbit of useful power set information: |P(S)| = 2|S|. Combined with a
systematic listing of the subsets by size, knowing this can help you with power
set problems that might seem baffling at first glance.

Example 110:

Problem: Let E = {∅, {∅}}. What is P(E)?

Solution: Let’s start by using what we just learned: |P(E)| = 2|E| =
22 = 4. Now we just have to identify those four subsets.

Two are easy: All sets have the empty set and itself as subsets. We
just need the other two, which each must be of size 1, as we’ve covered
size 0 and size 2. Each of these two subsets must contain one of the
individual elements of E. We’re done: P(E) = {∅, {∅}, {{∅}}, {∅, {∅}}}.

If you’re wondering how to prove that |P(S)| = 2|S|, great! See the count-
ing chapter for the proof.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

166 CHAPTER 6. ADDITIONAL SET CONCEPTS

6.3.4 Disjoint Sets

Sets that have no common elements are disjoint.

Definition 34: Disjoint Setsdisjoint sets

Sets S and T are disjoint sets when S ∩ T = ∅.

There is no recognized symbol for disjoint sets.

Example 111:

Problem: Explain why the sets {i, k,m, o, q} and {r, p, n, l, i} are not dis-
joint.

Solution: By the definition of disjoint sets, for these sets to be disjoint
the intersections of these sets must be the empty set. These sets have
the element i in common; that is, {i, k,m, o, q} ∩ {r, p, n, l, i} = {i} 6= ∅.
Thus, these sets are not disjoint.

Example 112:

Problem: Consider the set C = {a, e}. How many subsets of the universe
U = {a, e, i, o, u} are disjoint with C?

Solution: We need to figure out how many subsets there are of U that do
not contain a or e. This is the same as asking how many subsets there
are of {i, o, u}. We already know that answer, because that collection of
subsets is the power set of {i, o, u}, and its cardinality is 2|{i,o,u}| = 8.
There are 8 subsets of {a, e, i, o, u} that are disjoint with C.

Example 112 is a good demonstration of how complex problems can be
made much less so by looking at the problem from a different point of view.
We could find the answer by listing all of the subsets of a five-element universe
(all 32 of them) and counting those that do not contain a or e. A little thought

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

6.3. SOME USEFUL SET CONCEPTS 167

saved a lot of work. We will see this problem-solving technique frequently in
the counting chapter. (And yes, this example is a counting problem!)

The idea of disjoint sets can be easily extended to more than a pair of sets
by computing all of the pairwise intersections of the sets and verifying that
all of those intersections are empty.

Example 113:

Problem: Are the sets {11, 15}, {19}, {10, 13, 14, 16}, and {12, 15, 18} all
disjoint from one another?

Solution: No, because there is one pair of sets (the first and the fourth)
that share 15.

6.3.5 Partitions

We need to make a brief detour into the ideas of generalized union generalized unionand gener-
alized intersection, generalized intersectionbecause we need generalized union to conveniently define
the idea of a partition.

We know that the symbol ∪ is used to represent the union of two sets.
But what if we have a large group of sets and want to represent the unioning
of all of them? Instead of creating a massive expression (A ∪ B ∪ C ∪ . . .),
we can create a short-cut in the same way that we use Σ to represent a large
summation. That is:

n⋃
i=1

Si = S1 ∪ S2 ∪ . . . ∪ Sn.

(LATEX : \bigcup\limits, or just \bigcup for a more compact version.)
Similarly, we can use

⋂
(LATEX: \bigcap) to represent a lengthy intersection

expression. End of detour!
Partitions of a set are closely related to the idea of disjoint sets, as the

definition makes clear.

Definition 35: Partition partition

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

168 CHAPTER 6. ADDITIONAL SET CONCEPTS

Non-empty sets S1, S2, . . . Sn form a partition of a base set B when⋃n
i=1 Si = B and Sj ∩ Sk = ∅ for all j, k such that 1 ≤ j, k ≤ n.

That is, a group of sets is a partition of B if (a) each set is non-empty,
(b) each element of B is found in one of the sets, and (c) all of the sets of the
group are disjoint from one another.

Example 114:

Problem: Together, are the set of odd integers (Zodd) and the set of even
integers (Zeven) a partition of Z?

Solution: Yes! All integers are either odd or even (yes, zero, too; it’s
even), and no integer is both. Because Zodd and Zeven are not empty, ev-
ery integer is either ∈ Zodd or ∈ Zeven (not both), and Zodd ∪ Zeven = Z,
Zodd and Zeven form a partition of Z.

Let’s revisit Example 113’s sets from the perspective of a partition.

Example 115:

Problem: Collectively, are the sets {11, 15}, {19}, {10, 13, 14, 16}, and
{12, 15, 18} a partition of the set B = {i | 10 ≤ i ≤ 19, i ∈ Z}?

Solution: (This is going to sound familiar . . .) No, because there is
one pair of sets (the first and the fourth) that share 15. For the group to
be a partition, each element must be a member of exactly one set.

Let’s drop the second occurrence of 15 and try it again.

Example 116:

Problem: Are the sets {11, 15}, {19}, {10, 13, 14, 16}, and {12, 18} a par-
tition of the set B = {i | 10 ≤ i ≤ 19, i ∈ Z}?

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

6.4. SET IDENTITIES 169

Solution: Again, no, but for a different reason. For the collection of
sets to be a partition, each value of the base set B must be included in
one of the sets. |B| = 10 but the sum of the cardinalities of the partition
sets is just 9. The element 17 is missing.

6.4 Set Identities
The connection between logic and sets extends to their collections of identities.
In this section, we will see that these identities are very similar (which is good,
as it means that they are easier to remember and to apply). Just as logical
identities (see Section 1.5.2) are useful in proving the equivalence of logical
expressions, set identities are useful in proving set equivalences. We can also
‘jump’ between set and logic notations to prove the set identities, should we
feel the need.3

6.4.1 Common Set Identities

As we did with the logical identities back in Chapter 1, we have divided the set
identities into separate tables by the set operators they use. Our collection of
set identities isn’t nearly as extensive as is our lists of logical identities. That’s
not to imply that set identities are less important; rather, we don’t have as
many operators. We don’t have corresponding set operators for exclusive-
OR, implication, and biimplication.4 We do have set difference and Cartesian
Product, but the latter makes sets of ordered pairs, not of basic elements,
with the result that it doesn’t ‘mingle’ well with the others.

Table 16: Some Set Identities using Union (∪) and Intersection
(∩)

3And we will!
4Before those of you with set theory backgrounds — you know who you are — get too

worked up about this claim, remember that this chapter didn’t cover symmetric difference,
and we aren’t considering subset and proper subset to be operators. Still need to get lathered
up? Please address all complaints to /dev/null.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

170 CHAPTER 6. ADDITIONAL SET CONCEPTS

(a) S ∩ S = S Idempotency
S ∪ S = S

(b) S ∩ ∅ = ∅ Domination
S ∪ U = U

(c) S ∩ U = S Identity
S ∪ ∅ = S

(d) S ∩ T = T ∩ S Commutativity
S ∪ T = T ∪ S

(e) S ∩ (T ∩W) = (S ∩ T) ∩W Associativity
S ∪ (T ∪W) = (S ∪ T) ∪W

(f) S ∩ (T ∪W) = (S ∩T)∪ (S ∩W) Distributivity
S ∪ (T ∩W) = (S ∪T)∩ (S ∪W)

(g) S ∩ (S ∪ T) = S Absorption Laws
S ∪ (S ∩ T) = S

Table 17: Some More Set Identities (adding Complement (2))

(a) S = S Dbl. Complement (Involution)
(b) S ∩ S = ∅ Complement Laws

S ∪ S = U
(c) S ∩ T = S ∪ T De Morgan’s Laws

S ∪ T = S ∩ T

Table 18: Still More Set Identities (adding Difference (−))

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

6.4. SET IDENTITIES 171

(a) S − T = S ∩ T Definition of Difference
(b) S − T = S − (S ∩ T)
(c) S − S = ∅
(d) S − ∅ = S

(e) ∅ − S = ∅
(f) S − U = ∅
(g) U − S = S

6.4.2 Proving Set Expressions

You probably remember that, in Chapter 1, we demonstrated how to prove the
truth of logical equivalences. At the time, we didn’t know what a ‘proof’ was,5
but now we know that what we were doing was constructing straight-forward
direct proofs. We will do the same sort of thing to prove set expressions.

Let’s ease into these proofs by starting with an easy one. On rare occasions,
we get lucky and are asked to prove something that’s covered by a definition.

Example 117:

Problem: Prove or disprove: A ⊆ P(A), where A is a set.

Solution: Of course, we already know that a set’s power set contains
the set itself, but we can’t hold our noses in the air, sniff derisively, and
walk stiffly away, in search of a conjecture that is up to our standards.
We need to prove it if we can, and we definitely can.

Proof (Direct): By definition, the power set of a set S is the set
containing all of S’s subsets. Because every set is a subset of itself
(according to the definition of subset), each set is an element of
its own power set.

Therefore, A ⊆ P(A).

5Ah, those happier days of our youth . . .

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

172 CHAPTER 6. ADDITIONAL SET CONCEPTS

Figure 6.2: Mark Messier, Hall of Fame hockey player and now namesake of
all inelegant proofs. (Credit: NY Daily News)

We hope you enjoyed Example 117; the rest of the examples will be much
messier.6

Example 118:

Problem: Prove or disprove: If A ⊂ B and B ⊆ C, then A ⊂ C.

Solution: As always, it’s a good idea to check that the conjecture is
worth trying to prove. A quick Venn diagram (see Figure 6.3) suggests
that the conjecture holds.

To create a formal proof, we will make use of our old friend, logic. We

6Yes, this word is the entire justification for Figure 6.2. We should be ashamed, but
aren’t.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

6.4. SET IDENTITIES 173

•
•
•
•

•

•?

A

B

C U

Figure 6.3: Yes, when A ⊂ B and B ⊆ C, it seems that A ⊂ C is true. (See
Example 118.)

know how to express ⊂ and ⊆ logically, and we know lots of logical equiva-
lences and several common rules of inference. We’ll just put some of them
to work. Here’s the complete proof; a dissection follows.

Proof (Direct): Assume that the elements represented by d and
e, below, are members of the same universe as are the elements of
the sets A, B, and C.

(1) A ⊂ B [Given]
(2) B ⊆ C [Given]
(3) ∀d(d ∈ A→ d ∈ B) ∧ ∃e(e 6∈ A ∧ e ∈ B) [1, Def. of ⊂]
(4) ∀d(d ∈ B → d ∈ C) [2, Def. of ⊆]
(5) ∀d[(d ∈ A→ d ∈ B) ∧ (d ∈ B → d ∈ C)] ∧ ∃e(e 6∈ A ∧ e ∈ B)

[3, 4, Conjunction]
(6) ∀d[(d ∈ A→ d ∈ B) ∧ (d ∈ B → d ∈ C)] ∧ ∃e(e 6∈ A ∧ e ∈ C)

[5, Modus Ponens]
(7) ∀d(d ∈ A→ d ∈ C) ∧ ∃e(e 6∈ A ∧ e ∈ C) [6, Hypo. Syll.]
(8) ∴ A ⊂ C [7, Def. of ⊂]

Therefore, if A ⊂ B and B ⊆ C, then A ⊂ C.

We have two useful pieces of given information, making a direct proof
seem like a good choice of proof technique. As it does for logical proofs,
a tabular format works well for set proofs, although, as you can see, the
lines can get a little long.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

174 CHAPTER 6. ADDITIONAL SET CONCEPTS

We begin with the givens (lines 1 and 2), and express them logically
(lines 3 and 4). We did not include “d, e ∈ U” on lines 3 through 7 in the
interest of space, instead opting to pre-declare them on the first line of
the proof block.

The proof gets more interesting in line 5, where we combine the universal
quantifications from lines 3 and 4. We can do this because a univer-
sal quantification is just that: Universal. Both d ∈ A → d ∈ B and
d ∈ B → d ∈ C are assumed true for all elements, which we can say in
one statement rather than two. We aren’t required to combine them in
order to complete the proof, but doing so allows us to show that such a
merger is possible.

Line 6 differs from Line 5 by just one character: The last B is replaced
by a C. Here’s how we can justify making that replacement. We know,
from Line 5, that there’s an element in B (∃e(e ∈ B)). We also know
that if e ∈ B, then e ∈ C, by the universal quantification portion of Line
5. By Modus Ponens, we know that e ∈ C follows.

At this point, the odds are good that you have at least one of these
two questions: “Why do we have to make that one-letter change?”, and
“e ∈ B is still assumed true, so why isn’t it still in the expression of Line
6?” One answer covers both questions. We know our destination: A ⊂ C.
To get there, we need to be able to assume that ∃e(e 6∈ A∧e ∈ C). e ∈ B
is indeed still assumed to be true, but it’s no longer useful to us, so we
dropped it. Keeping it just adds unnecessary clutter to our already well-
cluttered proof.

Line 7 neatly follows from Line 6, thanks to Hypothetical Syllogism on
d ∈ A→ d ∈ B and d ∈ B → d ∈ C. The resulting expression is exactly
the logical form of A ⊂ C. Making sure that the reader recognizes that
completes the argument.

A common type of set proof requires showing that two set expressions S
and T are equal; that is, that they describe the same set of elements. Here
are two possible approaches to this type of conjecture:

1. Follow the definition of set equality: Prove that both S ⊆ T and T ⊆ S
are true, using the logical expression for ⊆.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

6.4. SET IDENTITIES 175

2. Express one side in terms of set builder notation and logical operators,
prove, and convert back to set notation.

The latter is usually less work, but the former is good to know, because it also
shows how to prove subset (and proper subset) expressions.

To make the two approaches easier to compare and contrast, we will apply
them both to the same set expression. This expression looks like it should be
straight-forward to prove, and it is . . . if you choose the right approach. We
will start with the subset definition approach.

Example 119:

Problem: Prove or disprove: S − S = ∅.

Solution: Applying the definition of subset naturally leads to a two-part
proof, one for each ‘direction.’

Proof (Direct): By the definition of set equality, if S − S ⊆ ∅
and ∅ ⊆ S − S, then S − S = ∅. We will prove both parts.
Throughout, assume that y, z ∈ U .

Case 1: Consider S − S ⊆ ∅.

(1) S − S ⊆ ∅ = ∀z(z ∈ S − S → z ∈ ∅) [Def. of ⊆]
(2) = ∀z(z ∈ S − S → F) [Nothing ∈ ∅]
(3) = ∀z(z 6∈ S − S) [Law of False Cons.]
(4) = ∀z(z 6∈ {y | y ∈ S ∧ y 6∈ S}) [Def. of Set Diff.]
(5) = ∀z(z 6∈ {y | F}) [Negation Laws]
(6) = ∀z(z 6∈ ∅) [Meaning of ∅]
(7) = T [Still nothing ∈ ∅!]

Case 2: Consider ∅ ⊆ S − S.

(1) ∅ ⊆ S − S = ∀z(z ∈ ∅ → z ∈ S − S) [Def. of ⊆]
(2) = ∀z(F→ z ∈ S − S) [Nothing ∈ ∅]
(3) = ∀z(T) [Def. of →]
(4) = T [Tautology]

Therefore, S − S = ∅.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

176 CHAPTER 6. ADDITIONAL SET CONCEPTS

Several of the steps of this proof rely on knowledge of the empty set.
For example, line 2 of Case 1 follows from the realization that the empty
set contains no elements, meaning that z ∈ ∅ must be false. A less clear
example from Case 1 is the step from line 5 to line 6. {y | F} looks
cryptic, but can be thought of as a trivial case for set builder notation.
Elements are in the set ‘such that false.’ That is, the condition for mem-
bership can never be true, and as no element can pass the inclusion test,
the set must be empty.

Case 2 is much less complex. The trickiest part is interpreting ∀z(T),
but doing so is easier if you think about truth tables and tautologies. In
a truth table, we can see that a logical expression is a tautology when
the last column contains only values of ‘true.’ Similarly, ∀z(T) says that
the condition is true for all elements of the universe. That’s as true
as it gets. Note that we could have included the same step in Case 1
(. . . ∀z(z 6∈ ∅) = ∀z(T) = T), but doing so wouldn’t have clarified the
argument.

If you didn’t get too consumed by the details of the first case of the proof
of Example 119, you may have noticed something interesting about the first
case: Hidden inside is a proof of the original conjecture! Example 119’s proof
is fine, but it’s far longer than the ‘convert to logic’ alternative, which is the
version hidden in the first case. Here’s that approach, as a stand-alone proof.

Example 120:

Problem: Prove or disprove: S − S = ∅.

Solution: As we’ve already created this approach as part of Example 119,
we’ll get straight to the proof.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

6.5. CHOOSING A SET REPRESENTATION 177

Proof (Direct): Assume that y ∈ U .

(1) S − S = {y | y ∈ S ∧ y 6∈ S} [Def. of Set Difference]
(2) = {y | F} [Negation Laws]
(3) = ∅ [Meaning of ∅]

Therefore, S − S = ∅.

Short and sweet! This is clearly the technique to use to prove this con-
jecture, but Example 119 was much more educational.

These set proof examples have introduced a few new equalities and equiv-
alences that are handy to remember when writing set proofs. Table 19 has a
more complete list.

Table 19: Foundational Set Equalities and Equivalences

(a) ∀z(T) ≡ T Tautology
(b) ∀z(F) ≡ F Contradiction
(c) {z | T} = U “Such that true” means all elements are in the set
(d) {z | F} = ∅ “Such that false” means no elements are in the set

A reminder: Proof-writing is often a slow process that involves a lot of
‘wasted’ work, work that never appears in the final version that you show the
world. That can be frustrating, but remember that this happens to everyone
who writes proofs, paints, repairs cars, breathes, etc. The more proofs you
write, the better you will get at selecting an initial proof approach, and the
faster your brain will dig up useful answers to all of the “OK, now what do I
do?” questions.

6.5 Choosing a Set Representation

A set can be viewed as an unordered list without duplicate elements. This
naturally leads computer programmers to think of arrays, linked lists, trees,
and hash tables as possible data structures for set representations.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

178 CHAPTER 6. ADDITIONAL SET CONCEPTS

An alternative way to look at the problem is to consider the operations
that need to be performed on sets. This is the subject of one of our favorite
programming mantras: “Choose the representation that best supports the
operations.” We are now very familiar with the typical set operations (and
operation-like characteristics such as subset). The question: Do any of those
classic linear data structures do a good job supporting set operations?

As this isn’t a data structures book, you won’t be subjected to an exhaus-
tive analysis. Instead, we will give a quick answer: Not really. OK, we can be
a little less quick. All of the data structures mentioned at the top of this sec-
tion can be used, but they all have their own advantages and disadvantages,
including operation efficiency (having an ordered representation makes some
operations more efficient to execute) and space (references stored in linked list
and tree nodes add storage overhead).

Example 121:

Java, starting with version 1.2, has offered a Set interface with none of
the basic set operators . . . at least not by the names we know them. For
example, addAll() and removeAll() are essentially union and difference,
respectively, while contains() can be used to construct intersection.

This interface is supported by classes such as HashSet and TreeSet,
which, as their names suggest, use a hash table and a tree (as of this
writing a Red-Black tree, a kind of balanced binary search tree) as their
representations. With this arrangement, Java allows programmers to se-
lect a representation that best fits their program’s needs.

A space-saving alternative representation for a set, one that also does a
remarkably good job supporting set operators, is a bit vector.bit vector Essentially, a
bit vector is just an array of bits. To use one as a set representation, we assign
each member of the universe a position in the vector. If the bit is ‘0’, the set
doesn’t contain the corresponding element; if it is ‘1’, the set does contain it.

Example 122:

Consider U = {1, 2, 3, 4, 5, 6, 7, 8, 9}. This means that we need a bit vec-
tor of nine bits in length. Let the left-most bit represent 1, the next 2,

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

6.5. CHOOSING A SET REPRESENTATION 179

etc. Using that mapping, here are some examples of sets and their corre-
sponding bit vector representations.

Set Representation
{3, 4} 001100000

{1, 3, 5, 7, 9} 101010101
∅ 000000000
U 111111111

Are you concerned that, by using a bit vector, we are imposing an ordering
on the elements of U? We aren’t changing the definition of a set; the ordering
of the set elements is still irrelevant. {3, 4} and {4, 3} are still the same set.
Both sets just have the same representation when viewed as a bit vector,
which, as they are the same set, makes a lot of sense. Thus, the concept and
the representation need not possess exactly the same characteristics. What
matters is how well the representation supports the concept and its operations.

The second advantage of using bit vectors to represent sets is that most
set operations can be performed very efficiently. Computer central processing
units (CPUs) are designed to perform a relatively small collection of basic
operations very efficiently. Those operations almost always include bit-wise
logical operations such as AND and OR. A 64-bit CPU, for example, can AND
or OR together two 64-bit values, which means we can perform set intersection
and union operations on sets from a 64-element universe with a single CPU
instruction. 64 elements may not seem like a lot, but that’s more than the
quantities of upper- and lower-case letters in the modern Latin alphabet (26
each), and the quantity of Roman digits (10), combined. Table 20 shows how
the four basic set operations can be performed on bit vectors.

Table 20: Set and Corresponding Bit-wise Logical Operators

Set Operators Bit-wise Logical Operators
A ∪B A ∨B
A ∩B A ∧B
A A

A−B (= A ∩B) A ∧B

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

180 CHAPTER 6. ADDITIONAL SET CONCEPTS

The fact that A−B = A∩B was introduced in Appendix A. If you are curious
how to perform these bit-wise logical operators in C or Java programs, see
Table 6 in Chapter 1.

Example 123:

Again let U = {1, 2, 3, 4, 5, 6, 7, 8, 9}. Also assume that O = {1, 3, 5, 7, 9},
E = {2, 4, 6, 8}, and C = {4, 6, 8, 9}. As bit vectors, based on the
given element ordering of U , O = 101010101, E = 010101010, and
C = 000101011.

The following tables demonstrate each of the four set operators. Union,
intersection, and complement are straight-forward. Difference, because it
is a compound operator, requires an additional step.

Union:

O {1, 3, 5, 7, 9} 101010101
∪ E ⇒ ∪ {2, 4, 6, 8} ⇒ ∨ 010101010
U {1, 2, 3, 4, 5, 6, 7, 8, 9} 111111111

Intersection:

C {4, 6, 8, 9} 000101011
∩ E ⇒ ∩ {2, 4, 6, 8} ⇒ ∧ 010101010
{4, 6, 8} {4, 6, 8} 000101010

Complement:

O ⇒ {1, 3, 5, 7, 9} ⇒ 101010101
E {2, 4, 6, 8} 010101010

Difference:

E E {2, 4, 6, 8} 010101010
− C ⇒ ∩ C ⇒ ∩ {4, 6, 8, 9} ⇒ ∧ 111010100
{2} {2} {2} 010000000

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

6.5. CHOOSING A SET REPRESENTATION 181

Bit vectors seem to be a great representation; they have both space effi-
ciency (just 1 bit of storage per element) and operation efficiency (operators
correspond to CPU instructions). Unfortunately, if we look more closely, prob-
lems appear, including:

1. We need to keep track of the mapping between the bit positions and the
elements of the sets,

2. Not all operators are bit-vector-friendly (e.g., Cartesian Product), and

3. Subsets of infinite sets cannot be represented.

Choosing a data representation means accepting tradeoffs. For example,
if we use a linked list as a set representation, we can store the set elements
directly (no mapping to bits needed) and we can store a subset of an infinite
set, but storing the sets will require much more space (to maintain the list
structure) and processing the operators will be considerably more expensive
(the lists must be traversed). Good software developers consider such issues
before settling on a representation . . . and they (usually grudgingly!) switch
to a new representation when one is needed.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

Chapter 7

Matrices

The word “matrix” has a variety of definitions.1 Not surprisingly, we are
interested in a definition used in mathematics:

Definition 36: Matrix matrix

A matrix is an n-dimensional collection of values, n ∈ Z+.

Figure 7.1 shows examples of small one–dimensional and two–dimensional
matrices. We stop at two because comprehensible two–dimensional represen-
tations of three–dimensional matrices are hard to create. Happily, for this
book, one– and two–dimensional matrices are all that we will need.

7.1 The Utility of Matrices

The ACM/IEEE Computer Society produces curriculum guidelines for Com-
puter Science education, to help secondary and higher-education institutions
ensure that they are graduating students that possess a common core of basic
knowledge of the discipline. The section on Discrete Structures in the 2013
guidelines2 does not mention the words ‘matrix’ or ‘matrices’ at all. So why,
then, does this book devote a chapter to the topic?

1Such as: The area that produces the cells that become a fingernail is called the matrix.
Makes you think of the Matrix movie franchise in a new way, doesn’t it?

2ACM/IEEE-CS Joint Task Force on Computing Curricula, ACM Press and IEEE Com-
puter Society Press, December 2013. DOI: http://dx.doi.org/10.1145/2534860

183

184 CHAPTER 7. MATRICES

[
2 1729 87539319

] [
9 −2 0 5

18 1 −6 7

]

Figure 7.1: One– and Two–Dimensional Matrices of Integers

There are several reasons to provide the basics of matrices in a discrete
structures book. For example:

• Chapter 8 covers a type of set known as a relation. There are multiple
useful ways to represent relations, one of which is a matrix representa-
tion.

• Another representation of relations is a data structure known as a graph.
Graphs, a generalization of tree data structures, are far more useful
than that one application. Matrices are used to represent graphs within
programs.

• Speaking of programs: If you are studying discrete structures, you have
almost certainly written a program that used an array data structure.
Many definitions of matrices define them in terms of arrays, which can
be confusing because the two words are often assumed to be synonyms.
An n–dimensional array and an n-dimensional matrix are essentially the
same thing.

• In computer graphics, matrices are used for a variety of purposes, in-
cluding 2D projections, affine transformations, and texturing. We will
present one computer graphics example later in this chapter (see Sec-
tion 7.5).

• Cryptography, the study of ways to encode messages such that only the
intended recipient can easily decode them, relies heavily on matrices.
The Advanced Encryption Standard (AES), for example, is based on a
sequence of matrix operations.

In short, a good working knowledge of matrices and their common op-
erations is essential to understand many topics in Computer Science, most
immediately the concepts of relations and graphs covered later in this book.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

7.2. MATRIX FUNDAMENTALS 185

[
2 1729 87539319

] (
1 3 5

) 1
3
6

 0

1
4

Figure 7.2: Examples of Row and Column Vectors with Brackets and Paren-
theses

7.2 Matrix Fundamentals

7.2.1 Matrix Notations and Sizes

Figure 7.1 demonstrates how one– and two-dimensional matrices are often
drawn. The collections of values are bounded on the left and right with
brackets (a.k.a. square brackets), with the tiny bracket ‘tips’ on the tops
and bottoms of the symbols serving to limit the content vertically. Some
people prefer to use parentheses (a.k.a. round brackets) instead of brackets.

One–dimensional matrices can be presented as row matrices (a.k.a. row
vectors) or as column matrices (a.k.a. column vectors). The difference is
more than just a matter of taste, as we will see later in this chapter. Either
way, we still use brackets or parentheses to delimit their content, as shown in
Figure 7.2.

Just as we labeled predicates, propositions and sets, we label matrices,
usually with upper-case letters, as in:

T =
[

2 1729 87539319
]

To reference the values within a one–dimensional matrix, we use the lower-
case version of the matrix’s label and append a subscript, with the first value
(left-most for row matrices or top-most for column matrices) indexed with
one.3 Thus, in T , t1 = 2, t2 = 1729, and t3 = 87539319.

In two–dimensional matrices, we need two subscripts. By convention, the
first index is the row index, the second is the column index, and element m11
is in the upper-left corner. In our two–dimensional matrix from Figure 7.1:

3I know, I know. You’re a proud, card-carrying computer programmer, and know that,
for reasons of efficiency, most programming languages use zero-based indexing for arrays and
lists. Mathematics is just slightly older than computer science, so mathematicians got to
define matrix indexing. To facilitate communication, everyone, even the proudest computer
scientist, uses one-based indexing when discussing matrices.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

186 CHAPTER 7. MATRICES

M =
1 2 3 4[]1 9 −2 0 5

2 18 1 −6 7
=
[
m11 m12 m13 m14
m21 m22 m23 m24

]

m11 = 9 and m24 = 7. Should a matrix have more than nine rows or columns,
commas are added to separate the row and column values, as in m32,15 = 7.

We follow the same row–column ordering to define the size of a two–
dimensional matrix. M has two rows and four columns, and so is a 2 × 4
(read: “two by four”) matrix.

What about the size of a one–dimensional matrix? We can’t only say that
T , above, is a matrix of length three, because that alone doesn’t distinguish
between a row vector of length three and a column vector of length three. The
problem is solved by thinking of a vector as either a rather flat, or a rather
thin, two–dimensional matrix. Thus, T , a row vector, is a 1 × 3 matrix. A
column vector of n values is described as having a size of n×1. Once the type
of vector has been established, we can use a simplified notation for element
references. That is, t1 references the same element as does t11, t2 references
the same element as does t12, etc. Because we already know that T is a row
vector, the single-subscript notation is all that we need.

7.2.2 Basic Matrix Definitions (and One Operation)

We need to present a few definitions (one of which is really an operation)
before we encounter the numeric matrix operations that will be useful later in
the book. The first one is easy:

Definition 37: Square Matrixsquare matrix

A square matrix is a two–dimensional matrix in which the number of rows
equals the number of columns.

Square matrices are frequently used in computing. For that reason, you
will see many definitions of matrix representations and operations that require
operands to be square. Note that the next definition is not one of them!

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

7.2. MATRIX FUNDAMENTALS 187

T =
[

2 1729 87539319
]

U =

 2
1729

87539319

 V =

 12 23
34 45
56 67

W =
[

12 23
34 45

]
X =

 12 23
43 45
56 67

 Y =

 2
1729

87539319

Figure 7.3: Six Integer Matrices for Example 124.

Definition 38: Matrix Equality matrix equality

Matrices A and B are equal (denoted A = B) iff they share the same
dimensions and all pairs of corresponding elements are equal.

Example 124:

Consider the matrices in Figure 7.3. T and U have the same content, but
they have different sizes. Thus, T 6= U .

V and W match in all four of their corresponding elements (v11 = w11,
v12 = w12, etc.) but their sizes are not the same, so V 6= W .

V and X have the same size (3 × 2) but not all corresponding pairs
of values match (v21 6= w21, for example), so V 6= X.

There are two matrices that are equal: U = Y . Both are 3 × 1 column
vectors, and all three corresponding pairs of values are equal. Sure, the
two columns of values are formatted differently, but that is not a problem.

Note that only W in Figure 7.3 is an example of a square matrix.

Does Definition 38 allow for us to say that a matrix is equal to itself? For
example, referring again to Figure 7.3, can we say that W = W? Yes! W

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

188 CHAPTER 7. MATRICES

is the same size as itself, and all of its corresponding pairs of values match.
Thus, W = W .

Time for the operation masquerading as a matrix definition.

Definition 39: Transpositiontransposition

The transposition of an m×n matrix A is the n×m matrix AT in which
the rows of A become the columns of AT.

Example 125:

Consider this matrix S:

S =

 1 5 9 13
2 6 10 14
3 7 11 15

To construct ST, write the elements of the first row vertically. Do

the same with the second row’s values, writing them vertically just to the
right of the column you formed from the first row’s content. Do the same
with the content of the third row. The result is the transpose of S:

ST =

1 2 3
5 6 7
9 10 11

13 14 15

Example 126:

Can vectors be transposed? Yes! Refer back to matrices T and U in
Figure 7.3. U = TT and T = UT. Because U = Y , we can also say that
Y = TT and T = Y T.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

7.2. MATRIX FUNDAMENTALS 189

A generalization of Example 126 is worth remembering: Given a matrix
A, the transpose of the transpose of A equals A. In notation,

(
AT
)T

= A.

Example 127:

There’s a well-known visualization of matrix transposition that is worth
knowing because, once you learn it, you are unlikely to forget how to
transpose a matrix.

Imagine a right human hand, held up so that you see the back of
it with its fingers pointing to the left. If you’re lacking in imagination,
consult this photograph:

More imagination: Think of the little finger as the first row of the
matrix to be transposed. The (in this case ringless) ring finger represents
the second row, etc.

 1 5 9 13
2 6 10 14
3 7 11 15

 =⇒

Now imagine the hand flipped over, with the palm facing you and the
fingers pointing up, as in this picture:4

Now the little finger represents the first column of the matrix, with
the ring finger the second column. That is, the flipped hand represents

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

190 CHAPTER 7. MATRICES

the transposition of the matrix represented by the first view of the hand.

The next definition of this subsection makes use of all three of the preceding
definitions.

Definition 40: Matrix Symmetrymatrix symmetry

Matrix A is symmetric iff A = AT.

Definition 40 clearly uses matrix equality and matrix transposition, but it
doesn’t say anything about A needing to be a square matrix. We can infer
this detail from the definition. We know that equal matrices need to have
matching quantities of rows and columns, and that transposition swaps rows
and columns. Thus, for A and AT to be equal, A’s quantities of rows and
columns must be the same. In other words, any symmetric matrix must be a
square matrix.

Example 128:

Consider this matrix:

R =

−2 4 1 9

4 13 −6 21
1 −6 0 4
9 21 4 10

Because R’s first row and first column contain the same values, as do

R’s second row and second column, etc., RT must equal R. By Defini-
tion 40, R is symmetric (and square!).

4Speaking of imagination: How did the owner of this hand not make a fortune as a
hand model? Maybe this book will be the hand’s big break. A hot-shot movie producer
will be reading the book, trying to decide whether or not to option it as a major summer
block-buster motion picture. (“Who should I cast as matrix S?”) Suddenly, she sees this
hand. “Forget the movie! I need this hand for a proctology commercial! The silly number
tattoos don’t matter; after all, we only need the index finger.”

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

7.2. MATRIX FUNDAMENTALS 191

Example 129:

In the matrix of capital letters Q, below, some letters are missing. In
order for the completed matrix Q′ to be symmetric, which letters must
be placed in the labeled locations?

Q =

w y [1] y m
y a b p [2]
f b x o z

[3] p o [4] a
m c z a s

Before rushing to examine the missing values, check the size of Q.

If Q is not square, it can never equal its transpose, meaning that the
missing values are irrelevant. Happily, Q is square — 5× 5.

Location [1] is the third value of the first row. For Q to be symmetric,
[1] must match the third value of the first column, which is f . We need
to put an f in place of [1].

Do you prefer starting with columns? No problem! Location [2] is
the second value of the fifth column. The second value of the fifth row is
c, so we replace [2] with c to make the fifth column symmetric with the
fifth row.

Let’s use our indexing syntax to do [3]. [3] is located at q41. To be
symmetric, [3] must match q14, which holds a y.

Finally, we have to replace [4]. It is located at q44, which means that
we have to replace [4] with . . . itself! Because there’s no letter at q44, we
can make Q′ symmetric using any letter we wish to use; why not d?

Here’s the resulting matrix Q′:

Q′ =

w y f y m
y a b p c
f b x o z
y p o d a
m c z a s

Q′ = (Q′)T; it is symmetric.

Before the final symmetry example, one more matrix definition.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

192 CHAPTER 7. MATRICES

Definition 41: Main Diagonalmain diagonal

The main diagonal of an n×n matrix A consists of the elements a11, a22,
. . . , ann.

That is, the main diagonal runs from the upper–left corner to the lower–
right corner of the matrix. Onto the example!

Example 130:

Did you enjoy the transposition–as–hand–flips idea? If so, you’ll probably
like this matrix symmetry visualization idea, too.

Imagine that you have a small rectangular mirror and a square matrix.
Stand the mirror on one edge along the main diagonal so that you can see
the values below the main diagonal reflected in the mirror. If the values
in the matrix in the locations above the main diagonal match those in
the reflection, the matrix is symmetric.

For instance, here’s a 3×3 matrix that just happens to be a symmetric
matrix, and the same matrix with a mirror positioned upon it as described
above:

Yes, you have to realize that the infinity symbol is a reflected ‘8’, that
the accented ‘w’ is ‘-3’, and the reflected ‘7’ is . . . well, whatever that
symbol is, but apart from that, the reflected values match the existing
values below the main diagonal.

Are you wondering about the values on the main diagonal? Don’t
worry about them! As we saw in Example 129, the main diagonal’s values
stay right where they are when the transposition is created. Because
they only have to match themselves, main diagonal values cannot break
symmetry.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

7.3. NUMERIC MATRIX OPERATIONS 193

7.3 Numeric Matrix Operations
Matrix transposition, covered in Section 7.2.2, is a matrix operation, but one
that can be applied to any matrix, no matter the content. When the content
of a matrix consists of real numbers, we can do a few more operations, the
last of which is more than a bit of work to evaluate.

7.3.1 Matrix Addition and Subtraction

Matrix addition is a simple and commonly-used operation. If you have ever
written a computer program that filled two arrays with data and added the
content together, element by element, to fill a third array, you’ve performed
matrix addition.

Definition 42: Matrix Addition matrix addition

The sum of two numeric n×m matrices A and B is the n×m matrix C
such that cij = aij + bij. (Also known as Matrix Sum.)

The definition of matrix subtraction is only slightly different.

Definition 43: Matrix Subtraction matrix subtraction

The difference of two numeric n × m matrices A and B is the n × m
matrix C such that cij = aij − bij. (Also known as Matrix Difference.)

Example 131:

Let:

O =

0 9
−4 2

4 5
−2 1

 P =

4 −8
1 8
−4 2

0 1

O and P are both 4 × 2 in size, and contain integers. Thus, we can

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

194 CHAPTER 7. MATRICES

add their corresponding pairs of values to compute the matrix addition
O + P :

O + P =

0 + 4 9 + (−8)
−4 + 1 2 + 8

4 + (−4) 5 + 2
−2 + 0 1 + 1

 =

4 1
−3 10

7 0
−2 2

Perhaps not surprisingly, the sum P +O is the same:

P +O =

4 + 0 −8 + 9

1 + (−4) 8 + 2
−4 + 4 2 + 5

0 + (−2) 1 + 1

 =

4 1
−3 10

7 0
−2 2

Example 131 suggests (but does not prove!) that matrix addition is com-
mutative, which it is. Matrix addition is commutative because each element of
the resulting matrix is formed from the addition of the corresponding elements
of the operand matrices, and addition of real values is commutative.

Example 132:

Matrix addition is commutative, but what about matrix difference? The
answer to that question depends on the answer to this question: Is basic
subtraction commutative? That is, does a− b = b− a for all values of a
and b?

Remember, to disprove a conjecture, we only need one counter-example.
Let’s try a = o42 = 1 and b = p42 = 1 from the matrices O and P in
Example 131. a − b = 1 − 1 = 0 and b − a = 1 − 1 = 0. In this case
a− b = b− a, which means that this is not a counter-example. But, this
case is the specific situation in which a = b. We need a little more variety.

Let’s try an a 6= b example by using a = o11 = 0 and b = p11 = 4.
a − b = 0 − 4 = −4, but b − a = 4 − 0 = 4. Because a − b 6= b − a,
we have our counter-example. It follows that matrix difference is not
commutative.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

7.3. NUMERIC MATRIX OPERATIONS 195

7.3.2 Scalar Multiplication

Having just covered matrix difference, we can reveal a minor secret: We did
not need to cover it. Just as we can accomplish the subtraction of two real
numbers by multiplying the second by −1 and adding (a− b = a+ (−1 · b)),
we can perform matrix difference by performing a scalar multiplication on the
second matrix and adding.

Before we can define scalar multiplication, we need to explain what a
‘scalar’ is.

Definition 44: Scalar scalar

A scalar is a real number.

Yes, very exciting. Also somewhat superficial, but good enough for our
needs.5

Definition 45: Scalar Multiplication scalar multiplication

The multiplication of a scalar d and an n×m numeric matrix A, written
dA, is the n×m matrix B such that bij = d · aij.

In plain English: To perform a scalar multiplication, we multiply every
element of the given matrix by the given scalar.

An alternate term for ‘scalar multiplication’ is ‘scalar product,’ but that
term is more commonly used as an alternate name for ‘dot product,’ which is
why we are not going to use the phrase ‘scalar product’ in this book.

Example 133:

Consider matrix O from Example 132, and the scalar 3:

5The term scalar has several meanings in math and science. For example, a scalar is, to
mathematicians more generally, an element of any field, where a field is a set of values for
which the operations of addition, subtraction, multiplication, and division are defined. For
example, the set Z can be called the field of integer values. Another example: In computer
programming, ‘scalar’ is an older term for a variable.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

196 CHAPTER 7. MATRICES

3O = 3 ·O = 3 ·

0 9
−4 2

4 5
−2 1

 =

0 27

−12 6
12 15
−6 3

Example 134:

In Section 7.3.1, we explained, but did not demonstrate, matrix differ-
ence. Here’s how to do matrix difference with scalar multiplication, using
matrices O and P from Example 132:

O − P = O + (−1P)

=

0 9
−4 2

4 5
−2 1

+

−1 ·

4 −8
1 8
−4 2

0 1

=

0 9
−4 2

4 5
−2 1

+

−4 8
−1 −8

4 −2
0 −1

=

−4 17
−5 −6

8 3
−2 0

7.3.3 Matrix Multiplication (a.k.a. Matrix Product)

Matrix multiplication, the first time you see it, may appear to be someone’s
idea of a joke. It can be difficult to see, from the definition, how there can
be a practical application of such a complex collection of seemingly arbitrary
operations. So, let’s start with a practical application.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

7.3. NUMERIC MATRIX OPERATIONS 197

Example 135:

Sports leagues often need to rank their teams for playoff seedings, or just
bragging rights. The obvious starting point is each team’s total number
of victories, but how can we ‘break’ ties?

Consider the Letters League, with teams Alpha, Beta, Gamma, and
Delta. Each team has played two games, with the following results. In
the first pair of games, Alpha defeated Gamma and Beta defeated Delta.
In the second pair, Alpha defeated Delta and Gamma defeated Beta. We
can represent these results in a domination matrix, D. drc is ‘1’ if team r
defeated team c, and is ‘0’ otherwise. D is a square matrix (4× 4 in this
case), with the rows and columns labeled identically:

D =

Alpha Beta Gamma Delta

Alpha 0 0 1 1
Beta 0 0 0 1

Gamma 0 1 0 0
Delta 0 0 0 0

→

Wins

2
1
1
0

Adding up the rows gives us the number of victories: Alpha has won two
games, and Beta and Gamma one game each. (Adding the columns gives
the number of losses.) Beta and Gamma are tied with one victory each.
But are they equally talented? What additional information can we use
to distinguish them?

Besides telling us direct wins and losses, the domination matrix can
also tell us transitive results. That is, we know that Alpha defeated
Gamma, and then Gamma defeated Beta. By transitivity, we could rea-
son that Alpha is a better team than Beta, even through Alpha and Beta
have not played directly against one another.

We can also represent these transitive results (which are called two–
step results, with the direct results called one–step) using a similar matrix

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

198 CHAPTER 7. MATRICES

which, for reasons of foreshadowing, we will name D2:

D2 =

Alpha Beta Gamma Delta

Alpha 0 1 0 0
Beta 0 0 0 0

Gamma 0 0 0 1
Delta 0 0 0 0

→

Two-Step
Results

1
0
1
0

The ‘1’ in the top row is the example we just used: Alpha is two–step
dominant over Beta because Alpha defeated Gamma and Gamma de-
feated Beta. The other ‘1’ in D2 comes from Gamma defeating Beta and
Beta defeating Delta.

Adding the values across the rows ofD2 gives the numbers of two–step
results. Adding the one–step totals to the two–step totals distinguishes
Beta and Gamma: Gamma’s total is two, while Beta’s is still one:

One-Step+Two-Step =

One-Step
Results

2
1
1
0

+

Two-Step
Results

1
0
1
0

=

Totals

Alpha 3
Beta 1

Gamma 2
Delta 0

You may well be asking: “OK, great, but what does this have to do
with multiplying matrices?” Filling D2 with two–step results wasn’t too
hard to do by inspection, because we have just four teams and four games
played. Any thoughts as to an operation that we might be able to use to
automate that process to handle more teams and more games? We will
graciously give you one guess.

(We will tell you if your guess is correct, we promise. We will revisit
this example later in this chapter, in Example 149.)

Matrix addition and scalar multiplication were straight-forward; matrix
multiplication is not.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

7.3. NUMERIC MATRIX OPERATIONS 199

Figure 7.4: Foreshadowing — also your guide to quality textbook writing?
Credit: Berkeley Breathed, “Bloom County”, December 11, 1985.

Definition 46: Matrix Multiplication matrix multiplication

The product of an m × n matrix A and an n × o matrix B is an m × o
matrix C = A · B = AB in which cij =

n∑
k=1

(aik · bkj). (Also known as

Matrix Product.)

For a definition that is not even two lines long, we have a lot to explain.
First, take a close look at the sizes of the operand matrices A and B. They

have a letter (n) in common, and that is not an accident. We can perform the
product of matrices D and E, in that order (that is, with D on the left of E),
only when D’s quantity of columns equals E’s quantity of rows.

Second, look at the size of the resulting matrix, C. Its quantity of rows
(m) matches the quantity of rows of A and its quantity of columns (o) matches
the quantity of columns of B. Again, this is not an accident.

Putting these two size observations together gives us the two preliminary
steps of performing a matrix multiplication:

1. Verify that the quantity of columns of the first/left matrix equals the
quantity of rows of the second/right matrix. If they do not match, a
matrix multiplication cannot be performed on the matrices in this order.

2. The size of the resulting matrix will have the same quantity of rows as
does the first/left matrix, and the same quantity of columns as does the
second/right matrix.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

200 CHAPTER 7. MATRICES

2× 4 4× 1

D’s size E’s size

(a)

2× 4 4× 1=

D’s columns = E’s rows

(b)

2× 4 4× 1=

(D · E)’s Size = 2× 1

(c)

Figure 7.5: Checking Matrix Sizes before Matrix Multiplication

When written out, the steps are pretty dry. We can show these steps
visually instead, as Example 136 and Figure 7.5 demonstrate.

Example 136:

Let D and E be the following matrices:

D =
[

3 5 −1 0
0 2 3 −2

]
E =

1
0
−4

2

D’s size is 2 × 4, and E’s is 4 × 1. By the definition of matrix mul-

tiplication, in order to perform D · E, the number of columns of D (4)
must equal the number of rows of E (4). The remaining two values, the
rows of D (2) and the columns of E (1) give us the size of their product:
2× 1.

Figure 7.5 shows a visualization that can help you remember the
needed relationships. Begin, as shown in part (a), by writing down the
sizes of the matrices D and E, side by side, with the size of the first/left
matrix on the left. This places the number of columns of the left ma-
trix next to the number of rows of the right matrix, making it easy to
remember that this is the pair of values that must be equal (part (b)).
The remaining pair of values provide the size of the resulting matrix, as
shown in part (c).

Determining the that matrix product can be computed, and how large the
resulting matrix will be, is most of the text of the Definition 46. Unfortunately,
the hard part remains: Computing the product. The notation is short and

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

7.3. NUMERIC MATRIX OPERATIONS 201

sweet in the definition (“cij =
n∑
k=1

(aik · bkj)”), but what does that expression

require us to do?
Start with cij. The subscripts tell us the location within the result matrix

whose value we are trying to compute: row i, column j. The summation
(

n∑
k=1

)
has the other two variables, n and k. We already know what n represents:
The quantity of columns of the first/left matrix, A, as well as the quantity of
rows of the second/right matrix, B. k starts at 1 and is incremented through
n. For each value of k, we find the values at locations aik and bkj and multiply
them. Adding up those n products produces the value to be placed at cij. Yes,
computing a matrix product can require a fair amount of arithmetic, but not
difficult arithmetic, merely tedious and error-prone arithmetic.6

Example 137:

Let’s finish what we started in Example 136. Here are D and E again,
with place-holders for the values of the resulting D ·E matrix, which we
will call F :

D =
[

3 5 −1 0
0 2 3 −2

]
E =

1
0
−4

2

 D · E = F =

Let’s start with f11. With i = j = 1, and D’s quantity of columns

being 4, the summation becomes f11 =
4∑

k=1
(d1k · ek1). Expanding the

6We cannot understand how ‘tedious’ and ‘error-prone’ are not wildly popular names
for children. They aren’t even gender–specific! Yeah, it might be hard to know which name
to give to your first child, but you can always swap names later.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

202 CHAPTER 7. MATRICES

summation makes our task plain:

f11 =
4∑

k=1
(d1k · ek1)

= (d11 · e11) + (d12 · e21) + (d13 · e31) + (d14 · e41)
= (3 · 1) + (5 · 0) + (−1 · −4) + (0 · 2)
= 3 + 0 + 4 + 0
= 7

Notice that what we are doing is ‘walking’, left to right, across the
first row of D while simultaneously ‘sliding’, top to bottom, down the
first column of E. This is always what you will need to do to compute
the value at row i and column j of the result matrix: Walk across the
i-th row of the first/left matrix, and slide down the j-th column of the
second/right matrix.

All that remains is for us to repeat this for the other location, f21:

f21 =
4∑

k=1
(d2k · ek1)

= (d21 · e11) + (d22 · e21) + (d23 · e31) + (d24 · e41)
= (0 · 1) + (2 · 0) + (3 · −4) + (−2 · 2)
= 0 + 0 + (−12) + (−4)
= −16

And so:

[
3 5 −1 0
0 2 3 −2

]
·

1
0
−4

2

 =
[

7
−16

]

Before we leave D and E, a final question: Can we compute the matrix
product E · D? E is 4 × 1 in size, but D has 2 rows. 1 6= 2, and so E · D
cannot be computed. It follows that, in general, matrix multiplication is not
commutative.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

7.3. NUMERIC MATRIX OPERATIONS 203

Example 138:

Are you worried that you will have trouble remembering to walk across
the rows of the first matrix and slide down the columns of the second,
rather than the reverse? Perhaps you’re still a bit worried about check-
ing the matrix sizes correctly? Positioning the operand matrices in an
unusual way can help with both concerns.

Consider the matrices G and H and the eventual matrix product J ,
positioned as we’ve been positioning matrices:7

G =

 3 2
0 −2
1 0

 H =
[

1 3
3 4

]
G ·H = J =

By moving H up, and shifting J to be next to G and beneath H, we
produce:

H =
[

1 3
3 4

]

G =

 3 2
0 −2
1 0

 = J = G ·H

This arrangement shows that J fits perfectly next to G and beneath
H because it has the same quantity of rows as does G, and the same
quantity of columns as does H — exactly our sizing relationships. Also
notice that the rows of G and the columns of H, if you imagine extending
them, intersect at the boxes within J . If you select a particular box from
J , the row of G and the column of H that intersect at that box are the
row/column that we will walk–across/slide–down to produce the value
that belongs in that box. Be aware that we have to check separately that
the quantity of columns of G equals the number of rows of H.

What’s the content of J? We encourage you to work that out yourself!

7“Wait; G, H, . . . J? What have you got against I?” Calm down; we like I just fine. A
special family of matrices has the name I, so using it here to name a different matrix could
be confusing. Consumed by curiosity about I? Jump ahead to Section 7.4.3.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

204 CHAPTER 7. MATRICES

7.4 Matrix Powers and the Identity Matrix

7.4.1 Matrix Powers

Consider multiplying a square matrix by another square matrix. The only way
that this can be done is if both operand matrices are the same size (because
the quantity of rows of the first/left square matrix must equal the quantity of
columns of the second/right square matrix). The resulting matrix will be of
the same size as the operand matrices.

Let’s take this a bit further. If we want to multiply a matrix by itself, the
matrix must be square, and the resulting matrix will be a square matrix of the
same size. We can multiply the result by the original again, and repeat this
as many times as we wish. It’s similar to multiplying a real number by itself
multiple times to raise the number to an integer power. For example, 2 · 2 =
22 = 4, (2 · 2) · 2 = 22 · 2 = 23 = 8, etc. Doing repeated matrix multiplication
with square numeric matrices forms matrix powers of the matrix.

Definition 47: Matrix Powermatrix power

The nth matrix power of an m×m numeric matrix A, denoted An, is the
result of n− 1 successive matrix products of A.

Example 139:

What is K2, if K =
[

0 1
1 2

]
?

Because we already know how to perform matrix multiplication, com-
puting K2 is straight-forward.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

7.4. MATRIX POWERS AND THE IDENTITY MATRIX 205

K2 = K ·K

=
[

0 1
1 2

]
·
[

0 1
1 2

]

=
[

1 2
2 5

]

Example 140:

K2 wasn’t hard, because it didn’t matter which copy of K was on the left
— K = K! But to create K3, do we compute (K ·K) ·K or K · (K ·K)?

The answer is: It doesn’t matter! From Example 139, we know what
K2 contains. Let’s compute both K2 ·K and K ·K2:

K2 ·K =
[

1 2
2 5

]
·
[

0 1
1 2

]
=
[

2 5
5 12

]

K ·K2 =
[

0 1
1 2

]
·
[

1 2
2 5

]
=
[

2 5
5 12

]

That might seem to be a little . . . suspicious. Sure, this worked out, but
K is symmetric; maybe that’s a special case. We could try it again with a
non-symmetric matrix, but perhaps that would be a matrix that we cooked
up to make both orderings work. To convince people that the ordering of the
matrix products really does not matter, what we need is more generality, such
as we would use in a proof.

Example 141:

Problem: Prove that A3, the third matrix power of an 2 × 2 numeric
matrix A, is equal to both A2 ·A and A ·A2.

Solution: Let’s get something out of the way immediately: We demon-
strated, in Section 7.3.3, that matrix multiplication is not generally com-

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

206 CHAPTER 7. MATRICES

mutative. However, our current problem is not a general situation; rather,
it is specific to matrix powers, in which there is only one given matrix.
Further, Example 140 gives us some reason to believe that matrix multi-
plication might actually be commutative for matrix powers. Given that,
attempting a proof is worth the trouble.

We know that the resulting matrix A3 will be a 2 × 2 matrix. What
we need to show is that the four values that comprise A3 are the same
for both A2 ·A and A ·A2. Because the matrices we need to compute are
all 2× 2, and because the power is just 3, we can simply multiply all four
values for each of the two products and verify that they are the same ex-
pressions. Hard? Not really. Tedious and error-prone? Definitely. Good
thing we’re going to do the dirty work for you!

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

7.4. MATRIX POWERS AND THE IDENTITY MATRIX 207

Conjecture: If A is a 2 × 2 numeric matrix, then
A3 = A2 ·A = A ·A2.

Proof (Direct): We are given that A is a 2 × 2 numeric
matrix.

Let A =
[
a b
c d

]
, where a, b, c, d ∈ R.

A2 =
[
a b
c d

]
·
[
a b
c d

]

=
[
a2 + bc ab+ bd
ac+ cd bc+ d2

]

A2 ·A =
[
a2 + bc ab+ bd
ac+ cd bc+ d2

]
·
[
a b
c d

]

=
[

(a3 + abc) + (abc+ bcd) (a2b+ b2c) + (abd+ bd2)
(a2c+ acd) + (bc2 + cd2) (abc+ bcd) + (bcd+ d3)

]

A ·A2 =
[
a b
c d

]
·
[
a2 + bc ab+ bd
ac+ cd bc+ d2

]

=
[

(a3 + abc) + (abc+ bcd) (a2b+ abd) + (b2c+ bd2)
(a2c+ bc2) + (acd+ cd2) (abc+ bcd) + (bcd+ d3)

]

The expressions in all four locations of both results are equivalent
(due to commutativity of addition of real numbers).

Therefore, A3 = A2 ·A = A ·A2.

A note about the added parentheses: We added them to the result ma-
trices to organize the expressions a bit; they aren’t mathematically nec-
essary.

In the proof, we explained what we were doing in terms of commutativity.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

208 CHAPTER 7. MATRICES

We can also look at it in terms of associativity: A3 = AAA = (AA)A =
A(AA). Associativity of matrix multiplication holds for any three numeric
matrices A (of size i× j), B(j × k), and C(k× l), not just for matrix powers:
A(BC) = (AB)C. For that matter, matrix multiplication is also distributive
over matrix addition, when the sizes are appropriate: D(E+F) = DE+DF .

Are you wondering how the proof can be generalized to A4, to A5, and
eventually to Am, where m is any positive integer power? We can do that by
applying the definition of matrix multiplication more directly. We can also do
it inductively . . . but we haven’t covered inductive proofs yet. We soon will;
stay tuned!

7.4.2 The Cost of Matrix Multiplication

How much effort is required to multiply two matrices? That’s not an easy
question to answer. Complicating factors include whether or not code is being
parallelized, how memory is being managed, and which matrix multiplication
algorithm is used.8 We can ignore those complications and still learn some-
thing useful about how to multiply matrices using the definition’s approach.

When analyzing the execution cost of an algorithm, individual operations
are typically ignored in favor of an approximate category result. For exam-
ple, sequentially searching a list is a linear operation, meaning that the work
required is described as a linear function of n, the quantity of items in the
list, rather than other function of n (e.g., logarithmic or quadratic). Different
implementations of sequential search can have different linear functions that
describe the number of operations performed, such as 3n + 2 or 5n + 6. Be-
cause those are linear functions, we say that sequential search belongs to the
“linear” category of algorithm efficiencies.

In this section, we will be more detailed. We know that matrix multi-
plications require many real–number multiplications and additions. But how
many? Let’s find out.

The Cost of Multiplying Two Matrices

We defined two matrices D and E in Example 136:

8Yes, there are algorithms other than the one described by the matrix multiplication
definition, all created to require less effort. Two examples: The definition’s ‘naive’ approach
can be parallelized. Strassen’s algorithm exchanges multiplications for additions, but an
advantage is gained only for matrices with hundreds of rows/columns.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

7.4. MATRIX POWERS AND THE IDENTITY MATRIX 209

D =
[

3 5 −1 0
0 2 3 −2

]
E =

1
0
−4

2

Because the size of F = D ·E is 2×1, we need to compute two intermediate

results, f11 and f21. But, as we perform the same operations to compute each
of them (albeit on different groups of values), we can figure the numbers of
multiplications and additions for any one element fij and double it to get the
total for the entire matrix product.

Consider f21. Expanding the definition’s summation expression, as we did
in Example 137, shows us the required quantities of operations:

f21 =
4∑

k=1
(d2k · ek1) = (d21 · e11) + (d22 · e21) + (d23 · e31) + (d24 · e41)

Computing f21 requires four multiplications and three additions. Thus,
computing the content of F requires eight multiplications and six additions.
Hardly a lot of either, but of course the numbers will grow as as sizes of
the matrices grow. We need to generalize our observations so that we can
determine the work required for any pair of matrices.

To make what follows easier to understand, let’s re–introduce the variables
we used in the matrix product definition. Assume that we are computing
C = A ·B. Let A be m× n and let B be n× o, which means C is m× o.

Both the quantities of multiplications and additions are determined by n,
which is both the quantity of columns of A, and the number of rows of B.
Specifically, for each element cij, we perform n multiplications of elements of
A and B, and n−1 additions to sum those products. There are m ·o values in
C to compute. Thus, there are mno multiplications and m(n− 1)o additions
performed in the computation of C.

Example 142:

Question: How many total multiplications and additions are required to
compute AB using the definition when A is 10× 12 and B is 12× 6?

Answer: Using our m, n, and o variables, m = 10, n = 12, and o = 6.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

210 CHAPTER 7. MATRICES

There are mno = 10 · 12 · 6 = 720 multiplications and m(n − 1)o =
10 · 11 · 6 = 660 additions, for a total of 720 + 660 = 1380 operations.

Are you wondering how costly multiplications and additions of real num-
bers are to perform? There’s no easy answer to that question, because different
CPUs (Central Processing Units) implement addition and multiplication op-
erations differently. Very roughly, floating–point multiplications are twice as
expensive as are floating–point additions and subtractions.

The Cost of Multiplying Three Matrices

At the end of Section 7.4.1, we learned that matrix multiplication is associa-
tive; that is, ABC = (AB)C = A(BC). This means that we can compute
the matrix product ABC either by computing AB and then multiplying (on
the right) by C, or by computing BC and multiplying (on the left) by A. At
first glance, you might believe that the choice doesn’t matter — both give you
the correct answer. But do they both require the same amount of effort to
produce that answer? Let’s find out.

Example 143:

We will again assume, as we did in Example 142, that A is 10 × 12 and
B is 12× 6. Further, assume that our new third matrix, C, is 6× 8.

From Example 142, we know what it costs to compute the 10 × 6
matrix AB. Computing the 10× 8 matrix (AB)C requires an additional
10 · 6 · 8 = 480 multiplications and 10 · 5 · 8 = 400 additions, which is 880
operations. Add in the 1380 operations needed to compute AB, and the
grand total for (AB)C is 2260 operations.

We need to deal with A(BC) from scratch. BC requires 12 ·6 ·8 = 576
multiplications and 12 · 5 · 8 = 480 additions. A(BC) requires 10 · 12 · 8 =
960 multiplications and 10 · 11 · 8 = 880 additions. The grand total is
2896.

The difference is a (probably) surprising 636 (28%) more operations
to compute A(BC) than are needed to compute (AB)C. Keep in mind
that this result is for matrices of these three sizes. The math will work
out differently for other matrix sizes.

The take–away message: If you need to compute a sequence of matrix
multiplications just once, the associativity you choose is likely to make a

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

7.4. MATRIX POWERS AND THE IDENTITY MATRIX 211

difference, but probably not enough of a difference to be a concern. However,
if you need to perform the same product repeatedly (for example, because
the contents of the matrices change), figuring out the most efficient product
sequence is likely to be worth the effort.9

Example 144:

Huge matrices are not uncommon. The SuiteSpace Matrix Collection,10

as of this writing, includes a dataset of U.S. patent citations cover-
ing just utility patents granted during the 37 years 1963 through 1999.
The matrix representing it is 3, 774, 768 × 3, 774, 768. Using the ma-
trix multiplication definition’s approach, computing its second matrix
power would require 53,786,191,549,544,312,832 multiplications and a
mere 53,786,177,300,670,859,008 additions, for a total of more than 1020

operations.

7.4.3 Multiplicative Identity and the Identity Matrix

You might remember learning about additive and multiplicative identities in
other classes. A value a is the additive identity of a set of values if adding a
to another value of the set does not change the value. That is, a+ x = x. We
hope you know that a = 0 is the additive identity for the set of real numbers.
Similarly, a value m is the multiplicative identity of a set when m · x = x.
Considering the set of reals again, its multiplicative identity is m = 1.

Because addition and multiplication are defined for matrices, it makes
sense for us to think about additive and multiplicative identities for numeric
matrices. The m×n additive identity matrix only contains zeroes. Of course,
we have to choose m and n to allow the matrix addition to be performed.
Practically, additive identity matrices are not very interesting. Multiplicative
identity matrices, on the other hand, are rather useful.

A multiplicative identity matrix (always called I) must be sized so that
the matrix multiplication with another matrix A, A · I, is possible, and must
have content such that the result equals A.

9Fun fact: The number of ways to associate an n matrix multiplication sequence is the
(n − 1)st Catalan number. For example, there are C3 = 5 ways to associate a multipli-
cation sequence of n = 4 matrices: W (X(Y Z)), W ((XY)Z), (W (XY))Z, ((W X)Y)Z, and
(W X)(Y Z).

10Look for “SNAP/cit–Patents” at https://sparse.tamu.edu/

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

https://sparse.tamu.edu/

212 CHAPTER 7. MATRICES

Let’s consider size first. If A is m × n in size, to compute A · I, I must
have n rows. For the result to equal A, I must also have n columns. Thus, I
is a square matrix of size n× n. Notationally, we represent this matrix as In.

But what about I · A? We want that to equal A, too. No problem; if we
want I on the left of A, we need to use Im to make the matrix multiplication
work. That is: When the size of A is m×n, multiplying on the left of A with
Im, or multiplying on the right with In, will make the sizes work out correctly.

Now for the content: What must Im and In contain so that the products
Im ·A and A · In both produce the original matrix A’s content? We can figure
this out for ourselves by thinking about how a matrix product is produced.
Let A be 2× 2, and consider A · I2 = A. Let’s expand the matrices and stack
them to make the products easier to see:

I2 =
[
i11 i12
i21 i22

]

A =
[
a11 a12
a21 a22

] [
a
′
11 a

′
12

a
′
21 a

′
22

]
= A · I2 = A

Consider just the upper–left value of the product (a′11). From the definition
of matrix multiplication, we know that a′11 = (a11 · i11) + (a12 · i21). To end up
with a′11 = a11, We need to eliminate all of the other values on the right–hand
side. Using multiplicative identity, i11 must be 1. To eliminate a12, we need
to multiply by zero, so i21 = 0 .11

To complete the first row, a′12 must equal (a11 · i12) + (a12 · i22). By similar

reasoning, i12 = 0 and i22 = 1, giving us I2 =
[

1 0
0 1

]
. We need to retain the

values of the second row of A in exactly the same way. Happily, this content
for I2 will do that job, too. You can check for yourself that this content also
works for I2 ·A, as well as for other sizes of A that have more rows of A (when
computing A · I2) or more columns of A (for I2 ·A).

11The property a · 0 = 0 · a = 0 has at least two names, both of them quite dull: The
Multiplication Property of Zero, and the Zero Property of Multiplication. We propose that it
be renamed “Multiplicative Oblivion”, which is significantly more exciting. “Multiplicative
Domination” would work, too, but asking logical equivalences to share “Domination” with
multiplication doesn’t feel right.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

7.4. MATRIX POWERS AND THE IDENTITY MATRIX 213

Figure 7.6: If only Merlin had thought to consign Morgana to Mathe-
matical Oblivion instead. Credits: John Boorman’s “Excalibur”; https:
//memegenerator.net.

We can make I any size we need. In general:

In =

1 2 . . . n

1 1 0 . . . 0
2 0 1 . . . 0
...

...
...

n 0 0 . . . 1

Having provided so much explanation, the actual definition is old news:

Definition 48: Identity Matrices identity matrices

Identity Matrices (denoted In) are n×n matrices populated with 1 along
the main diagonal and 0 elsewhere.

Time to talk about the utility of the identity matrix, starting with matrix
powers. We now know that A3 = A · A · A, and A2 = A · A. It follows that
A1 = A. But what, if anything, does A0 represent? Right: I!

Here are two reasons that this makes sense. First, when r is a real number,
we know that r1 = r and r0 = 1. A1 = A and A0 = I parallels these basic

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

https://memegenerator.net
https://memegenerator.net

214 CHAPTER 7. MATRICES

powers of real numbers. Second, think about writing a few lines of code to
compute a running product. Traditionally, we would declare a variable to hold
the product, and would use a loop to multiply values into this variable. But
what should be the initial value of this variable? It can’t be zero, because
of “Mathematical Oblivion”,12 but one works nicely. The first time through
the loop, we multiply the variable’s value of one by the first value that forms
the running product, and the result is that value. With that starting point,
multiplying in the rest of the values will work as desired.13 Similarly, when
needing to compute a running product of matrices, we can initialize our run-
ning product matrix to hold I and multiply the first matrix from the collection
into it.

Why would we need to have a running product of a collection of matrices?
Computing a matrix power (see Section 7.4.1) is one reason. A second appears
when performing object transformations in computer graphics, as explained
in Section 7.5.

7.5 Matrix Operations in Orthographic
Projections

7.5.1 Our Problem: Design a Shed . . . or Maybe a Dog House

Imagine that you want to build, in the back left corner of your yard, a storage
shed that is 12 feet wide and 12 feet deep, with walls 9 feet high and a gable
roof that rises to 12 feet at the ridgeline. To help yourself visualize the shed,
you sketch out a diagram, with the origin at the corner of your yard, as shown
in Figure 7.7 (a).

This diagram is a two-dimensional representation of a three-dimensional
object. In drafting, this kind of representation is known as an orthographic
projection.14

Having drawn your shed to show three sides, next you decide to draw only
the front view of the shed; that is, how the front of the shed would look if
you stood in the middle of the road, directly in front of the shed, and looked

12You read the previous footnote, didn’t you?
13Yes, we could initialize the product variable to the first value of our collection and start

the ‘product–ing’ with the second value, but that wouldn’t help us make our point, and
nothing is more important than whatever point we are currently trying to make . . . whether
or not we can remember what it was ten seconds from now.

14Specifically, an axonometric orthographic projection. We’re pretty sure. It sounds
impressive, anyway. We are confident that it is not a perspective projection, because there
are no vanishing points.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

7.5. MATRIX OPERATIONS IN ORTHOGRAPHIC PROJECTIONS 215

x

y

z

12

12

9

12

(a)

x

y

0
0

12

12

9

(b)

x

y

0
0

2

2

(c)

x

y

0
0

49 51

2

(d)

Figure 7.7: Turning a Shed into a Dog House in Three Easy Steps.

toward your back yard. You would see only the front of the shed, not the
sides, the roof, or the back. This is shown in Figure 7.7 (b). You can think
of this as ‘flattening’ the shed against an imaginary wall along your back lot
line, much as you might flatten an aluminum can by standing it upright on
the ground and stomping on it with your foot. This is also an example of an
orthographic projection, but is more straight–forward because the projection
plane — the imaginary wall against which we are flattening the shed — is the
same as one of the three coordinate planes (in this case, the xy plane).15

Time for a plot twist: You start pricing materials and realize that your
vision greatly exceeds your budget. What will you do? Quit and look like an
incompetent fool to your friends and neighbors? No chance! You regroup and
get to work on the design of a dog house for your faithful companion. A shed
design quickly becomes a dog house design with just a little scaling (a.k.a.
resizing) of the dimensions. After measuring your puzzled dog, you decide to
make the dog house one-sixth the width of the shed, and one-fourth as tall
and as deep. Figure 7.7 (c) shows the scaled front view.

Your intellectual reputation has been saved! But is the back left corner
of the yard the right place for the dog house? If you win the lottery16 and
revive your shed dreams, you’ll still want it in the back corner. With that in
mind, you decide to place the dog house in the middle of the back of the yard.
Your lot is 100 feet wide, so the middle of the house will be 50 feet from the

15We are intentionally not giving precise definitions of these projections, because we want
to get back to matrices and matrix operations before the sun flames out. Please forgive us,
American Design Drafting Association!

16Reality check: You are highly unlikely to win the lottery’s grand prize. How extremely
highly unlikely? We will cover that in a later chapter. In the meantime, just take our word
for it: Ridiculously extremely highly unlikely.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

216 CHAPTER 7. MATRICES

back corners. This translation of the dog house from one location to another
is depicted in Figure 7.7 (d).

7.5.2 Combining The Operations

These three steps (‘flattening’ the shed, scaling it, and translating it) can be
done in separate steps, but they can be combined into one step. Let (x, y, z)
be a point on our original shed diagram (Figure 7.7 (a)). To create Figure 7.7
(b), the orthographic projection (‘flattening’) simply moves all of the points
to the xy–plane, which can be done by simply setting the z components of the
points to zero. Scaling, to create Figure 7.7 (c), is done by multiplying the x
and y components by their scaling factors sx and sy. In this case, sx = 1/6
and sy = 1/4. The final step, the translation to create Figure 7.7 (d), is
accomplished with addition (or subtraction) of translation amounts tx and ty.
Here, we want to slide along the x–axis to the right by 49 feet but leave all
of the y components unchanged. Thus, our translation amounts are tx = 49
and ty = 0. Combined, we produce formulae we can use to transform every
(x, y, z) point that we used to describe the shed into points (x′, y′, z′) that
describe the dog house’s front view:

x′ = sx · x+ tx = (1/6)x+ 49
y′ = sy · y + ty = (1/4)y
z′ = 0

For example, consider the upper front right corner of the shed diagram. It
is described by the point (12, 9, 12). Applying the expressions above, we find
that the corresponding corner of the dog house is located at (51, 2 1/4, 0).

That was pretty easy . . . and not a matrix in sight! Unfortunately, this
matrix–free approach has limitations as the applications become more com-
plex. First, that was the transformation of one point; we have to translate all
of the points that describe the object. Second, the shed / dog house is just one
object; what if we have to work with several different objects, as in an archi-
tectural drawing of an office building? Third, perhaps we need to transform
several objects many times per second to achieve smooth simulation motion,
as in a real–time video game.

When speed is critical, we can try to reduce the number of operations
that need to be performed. One way to do that is to combine transformation
operations into one or more matrices. Modern computers go a step further and
off–load those matrix operations to one or more graphics processing units —
GPUs — often found on graphics cards added to general–purpose computers.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

7.5. MATRIX OPERATIONS IN ORTHOGRAPHIC PROJECTIONS 217

To turn our projection–scaling–translation operation sequence into matrix
operations, we need to start by representing a point as a matrix. We could
use a row vector or a column vector. Traditionally, a column vector is used,
so we’ll follow that convention. Thus:

(x, y, z) =⇒

 x
y
z

Time to consider the operations. We will start with the orthographic

projection. In our example, the projection retained the x and y components
of each point and replaced the z components with zeroes. We can perform
this with matrix multiplication and a 3× 3 matrix that is almost an identity
matrix:

 1 0 0
0 1 0
0 0 0

 ·
 x
y
z

 =

 x
y
0

A lot of work, isn’t it, just to copy x and y and replace z with zero? This
can’t be worth the trouble! It wouldn’t be worth the trouble if this were all
that we needed to do . . . but it isn’t.

Scaling requires multiplying x and y by sx and sy, respectively. We can
do that with the same almost–identity matrix, by replacing the ones with sx
and sy: sx 0 0

0 sy 0
0 0 0

 ·
 x
y
z

 =

 1
6 0 0
0 1

4 0
0 0 0

 ·
 x
y
z

 =

1
6x
1
4y
0

Notice that we are performing both the ‘flattening’ and the scaling with

this one matrix — two transformations in one! This works because the product
of the two matrices is just this scaling matrix:

 1
6 0 0
0 1

4 0
0 0 0

 ·
 1 0 0

0 1 0
0 0 0

 =

 1
6 0 0
0 1

4 0
0 0 0

The final operation, the translation, cannot be done by modifying this

combined transformation matrix. But, we can do with matrix addition:

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

218 CHAPTER 7. MATRICES

 sx 0 0
0 sy 0
0 0 0

 ·
 x
y
z

+

 tx
ty
0

 =

 x′

y′

z′

 =

 1
6 0 0
0 1

4 0
0 0 0

 ·
 x
y
z

+

 49
0
0

Working out these matrix operations will produce the expressions for x′, y′,
and z′ from earlier: x′ = sx · x + tx = (1/6)x + 49, y′ = sy · y + ty = (1/4)y,
and z′ = 0.

Needing to perform the translation with a matrix addition is unsatisfying,
after having been able to combine the ‘flattening’ with the scaling into a sin-
gle matrix. It is possible to combine all three operations into a single matrix
multiplication, but not with 3× 3 matrices — 4× 4 matrices, combined with
homogeneous coordinates, are necessary. If you’d like to know how homoge-
neous coordinates work, consult an introductory computer graphics textbook.
With the matrix background you now possess, homogeneous coordinates, not
to mention other types of transformations, will be easier to understand.

7.6 Logical Matrices
Some of the matrices that we have used in this chapter, identity matrices
in particular, contain only two values: Zero and one. Does having just two
values to work with make you think about false, true, and logical operations?
Whether it did or not, that’s where this section will take us.

Logical matrices, a.k.a. “(0, 1)–matrices”, are so named because their con-
tent is drawn from the domain consisting of just the two symbols ‘0’ and ‘1’.
We do not interpret the symbols as integers; instead, we treat ‘0’ as ‘false’ and
‘1’ as ‘true’. Such matrices have many applications. We will present one here,
along with three operations that are reminiscent of matrix operations that we
introduced earlier in this chapter. Related applications will appear in a later
chapter.

7.6.1 Using Logical Matrices to Represent Subsets of
Cartesian Products

Quick review: A Cartesian Product of two sets A and B is the set of all
possible ordered pairs (a, b) of the elements of A and B.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

7.6. LOGICAL MATRICES 219

Example 145:

Let A = B = {a, b}. Then A×B = {(a, a), (a, b), (b, a), (b, b)}.

We know that Cartesian Products are sets, which is why we have been
representing Cartesian Products with set notation. Logical matrices are an-
other possible representation. LocationMab in the matrix is set to 1 when the
ordered pair (a, b) is an element of A×B.

Example 146:

Continuing from Example 145, because A×B contains all possible ordered
pairs, every location of M contains a 1:

M =
a b[]

a 1 1
b 1 1

Each ‘1’ tells us that a particular ordered pair exists in the set. For
example, the lower–left ‘1’ means that the ordered pair (b, a) is in the set.

Now consider two subsets of A × B. Let S = {(a, b), (b, b)} and T =
{(a, b), (b, a)}. Represented as logical matrices with the same labels:

S =
[

0 1
0 1

]
T =

[
0 1
1 0

]

7.6.2 ‘Meet’ and ‘Join’

In Section 7.3.1 we introduced matrix addition and matrix subtraction, which
applied addition and subtraction to corresponding pairs of matrix elements.
Similarly, with logical matrices, we can apply logical AND (‘∧’) and inclusive
OR (‘∨’) to pairs of same-sized (0, 1)–matrices. The names of these operations
are ‘meet’ and ‘join’, respectively.17

17Don’t blame us for these names! We didn’t come up with them. ‘Meet’ and ‘join’ are
also used as names for related but more complex operations on lattices, but we have yet to
learn whom to blame for the names.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

220 CHAPTER 7. MATRICES

Definition 49: ‘Meet’‘meet’

The ‘meet’ of two logical n×m matrices A and B is the n×m matrix C
such that cij = aij ∧ bij.

Definition 50: ‘Join’‘join’

The ‘join’ of two logical n×m matrices A and B is the n×m matrix C
such that cij = aij ∨ bij.

Performing ‘meet’ and ‘join’ is no more complex than is performing matrix
addition. What can be complex is remembering which operation performs
ANDing and which ORing. Here’s the memory aid we use: The words ‘or’
and ‘join’ both contain the letter ‘o’.18

Believe it or not, ‘meet’ and ‘join’ do have practical value, as the next
example demonstrates.

Example 147:

Continuing from Example 146, the ‘meet’ and ‘join’ of the logical matrices
S and T are:

S ‘meet’ T =
[

0 1
0 1

]
‘meet’

[
0 1
1 0

]
=
[

0 1
0 0

]

S ‘join’ T =
[

0 1
0 1

]
‘join’

[
0 1
1 0

]
=
[

0 1
1 1

]

The corresponding set representations of these results are {(a, b)} and
{(a, b), (b, a), (b, b)}. So what? Consider this: The intersection of the sets
S and T from Example 146 is the set {(a, b)} and their union is the set
{(a, b), (b, a), (b, b)}. That is, S∩T on subsets of Cartesian Products, and
S ‘meet’ T on logical matrices representing the same subsets, are actually

18Yeah, we know; it’s not a great aid, but it works for us.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

7.6. LOGICAL MATRICES 221

performing the same operation. The same is true of S ∪ T and S ‘join’
T .

With a little reflection, this shouldn’t be very surprising — we already
know about the connections between logical operators and set operators from
the previous chapter. We will learn much more about subsets of Cartesian
Products when we cover relations in Chapter 8.

7.6.3 Logical Matrix Product

Do you remember matrix multiplication from Section 7.3.3? We hope so, be-
cause if you do, logical matrix products (a.k.a. boolean products) will be a lot
easier to understand! Their definitions are very similar; we merely replace
additions with inclusive ORs and multiplications with logical ANDs, and in-
troduce new symbols � (LATEX: \odot) and

∨
(LATEX: \bigvee).

Definition 51: Logical Matrix Product logical matrix product

The logical matrix product of anm×n logical matrixA and an n×o logical
matrix B is anm×o logical matrix C = A�B in which cij =

n∨
k=1

(aik∧bkj).

(Also known as Boolean Product.)

The
∨

symbol tells us that we are to OR together all of the conjunctions
we produce for each application of the expression. That is, just as

∑
tells us

to add up all of the terms of the given sequence,
∨

says to OR up all of the
terms of the given sequence. For a logical matrix product, we have a sequence
of conjunctions to OR together.

Example 148:

Let L be a 3 × 3 logical matrix and M a 3 × 2 logical matrix. Before
computing the result of N = L�M , let’s start by stacking the matrices

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

222 CHAPTER 7. MATRICES

as we have done for matrix multiplication:

M =

 1 0
1 0
0 1

L =

 0 1 0
1 1 0
1 0 1

 = L�M = N

Consider n11. If we were computing L ·M , the expression would be
n11 = (0 · 1) + (1 · 1) + (0 · 0). To produce L�M instead, we replace the
additions with inclusive ORs and the multiplications with ANDs:

n11 = (l11 ∧m11) ∨ (l12 ∧m21) ∨ (l13 ∧m31)
= (0 ∧ 1) ∨ (1 ∧ 1) ∨ (0 ∧ 0)
= 0 ∨ 1 ∨ 0
= 1

Because most people are less comfortable with logical operators than
they are with arithmetic operators, silly mistakes are common when com-
puting these products manually. Please compute the rest of N ’s content
on your own. If you list the resulting values row by row, pretend that
the six values are bits of a binary value, and convert it to octal, you
should get 538.19 For example, following this conversion process, L be-
comes 0101101012 = 2658.

Example 149:

Finally, it is time to complete Example 135! At the end of that example,
we strongly hinted that matrix multiplication was the way to compute
the D2 matrix from which we computed the two–step column vector, and
it is. Thanks to what we have covered between these examples, we now
know that “D2” isn’t just a name; it represents the second power of D,
the matrix product D ·D.

19Forgotten how to convert from Base 2 to Base 8? See Section A.11 in Appendix A.
Yeah, we could just give you the answer, but would you work it out for yourself if we did?
That’s what we thought; see Figure 7.8.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

7.6. LOGICAL MATRICES 223

Figure 7.8: Honestly, if you enjoyed it, we’d be concerned. Credits: “Futu-
rama” episode 4ACV18 (“The Devil’s Hands Are Idle Playthings”); https:
//memedad.com.

A deeper question: How does that matrix multiplication produce the
two-step results? A follow–up question: Can we use a logical matrix
product to compute the same result?

We will answer both questions in this example. But first, for conve-
nience, here are D and D2, but with the actual (lower-case) Greek letters
instead of their English names, to save space and to help you learn to
recognize them:

D =

α β γ δ

α 0 0 1 1
β 0 0 0 1
γ 0 1 0 0
δ 0 0 0 0

D2 =

α β γ δ

α 0 1 0 0
β 0 0 0 0
γ 0 0 0 1
δ 0 0 0 0

Consider the 1 at row α and column β of D2, and recall that it
represents the transitive result that team Alpha (α) could be considered
to be ‘better’ than team Beta (β) because, looking at D, Alpha beat
Gamma and Gamma beat Beta.

In Example 135, that 1 value in D2 was discovered inspecting the
content of D. We want to learn why it can also be produced by ma-
trix multiplication. For clarity, here is the expanded expression for the
location row α column β of D2, and its evaluation:

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

https://memedad.com
https://memedad.com

224 CHAPTER 7. MATRICES

d2
αβ = (dαα · dαβ) + (dαβ · dββ) + (dαγ · dγβ) + (dαδ · dδβ)

= (0 · 0) + (0 · 0) + (1 · 1) + (1 · 0)
= 0 + 0 + 1 + 0
= 1

Notice which of the four products produced the 1: dαγ ·dγβ. Comput-
ing these four products requires us to examine all four ways of ‘connecting’
Alpha to Beta through the four teams. Looked at another way, each value
dij represents a win (1) or a loss (0) when i played j. The only way that
d2

αβ can be 1 is for both dαx and dxβ to be 1 for at least one team x. In
this case, x = γ. Because the matrix product is examining all ways that
Alpha could be transitively (a.k.a. two–steps) better than Beta, if a way
exists, the matrix product will find it. Here there was one way: Alpha
beat Gamma, and Gamma beat Beta.

The complete matrix power D2 contains the two–step results for all
possible pairings of teams. As we know, each result is due to four prod-
ucts, but some of those products will always be zero in this situation. For
example, consider the term dαα · dαβ from above. No intrasquad games
(that is, a game in which a team plays itself) will count in the standings,
meaning that dαα will always be zero. In the full four-product expres-
sion, only the last two terms could possibly be non–zero, because there
are only two teams to consider other than Alpha and Beta.

This has an important implication: Depending on the game outcomes,
with four teams playing each other at most once, it is possible for d2

αβ to
evaluate to zero, one, or two. Using the simple “one–step plus two–step”
tie-breaking approach shown in Example 135, the two–step results could
contribute a significant amount to the sum, perhaps more than you feel
the two–step data is worth as a way to distinguish teams. One way to
limit the two–step contribution is to cap the sum; for example, if the
two–step amount is greater than one, you could just add one.

7.6.4 Logical Matrix Powers

Because the definitions of matrix multiplication and logical matrix multipli-
cation are so similar in construction, the fact that we have a concept known

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

7.6. LOGICAL MATRICES 225

as logical matrix powers (a.k.a. boolean powers) that corresponds to matrix
powers should not be much of a surprise.

Definition 52: Logical Matrix Powers logical matrix powers

The nth logical matrix power of an m × m matrix L, denoted L[n], is
the m ×m logical matrix resulting from n − 1 successive logical matrix
products. (Also known as Boolean Powers.)

Notice that we add square brackets around the exponent, to distinguish
the notations for matrix powers from logical matrix powers. Another detail
that we need to mention, for completeness: L[0] = I.

Example 150:

At the end of Example 149, we suggested capping the magnitude of the
two–step results as a way to keep them from contributing too much to
the “one–step plus two–step” sum. Computing a logical matrix power
instead of a matrix power will do this automatically.

Let’s extend the game example by another set of games: Alpha con-
tinues its domination of the league by defeating Beta, and Gamma defeats
Delta to keep Delta winless. D is now:

D =

α β γ δ

α 0 1 1 1
β 0 0 0 1
γ 0 1 0 1
δ 0 0 0 0

So that we can compare them, here are D2 and D[2]. The difference
should be easy to identify:

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

226 CHAPTER 7. MATRICES

D2 =

α β γ δ

α 0 1 1 2
β 0 0 0 0
γ 0 0 0 1
δ 0 0 0 0

D[2] =

α β γ δ

α 0 1 1 1
β 0 0 0 0
γ 0 0 0 1
δ 0 0 0 0

D2 reveals that Alpha is transitively ‘better’ than Delta in two ways:
Alpha defeating Beta and Beta defeating Delta is the first, and Alpha
defeating Gamma and Gamma defeating Delta is the second. Because
D2 is computed with addition, we get a sum of two:

d2
αδ = (dαα · dαδ) + (dαβ · dβδ) + (dαγ · dγδ) + (dαδ · dδδ)

= (0 · 1) + (1 · 1) + (1 · 1) + (1 · 0)
= 0 + 1 + 1 + 0
= 2

The content of a logical matrix power is naturally capped at one
because, now matter how many times we inclusively-OR with ‘true’, the
result is nothing more than ‘true’:20

d
[2]
αδ = (dαα ∧ dαδ) ∨ (dαβ ∧ dβδ) ∨ (dαγ ∧ dγδ) ∨ (dαδ ∧ dδδ)

= (0 ∧ 1) ∨ (1 ∧ 1) ∨ (1 ∧ 1) ∨ (1 ∧ 0)
= 0 ∨ 1 ∨ 1 ∨ 0
= 1

In Example 150, you may have noticed that, with this extra pair of games
in D, there are no ties — each team has a unique number of victories —
making the computation of the two–step wins unnecessary . . . if all we needed
them for was to break ties. Looking beyond ties, ranking teams and estimating

20Logically, nothing is more true than ‘true’, but one might look beyond logic: “Fairy
tales are more than true: not because they tell us that dragons exist, but because they tell
us that dragons can be beaten.” Neil Gaiman, in Coraline, attributed the quote to G. K.
Chesterton’s Tremendous Trifles, but Chesterton never wrote it.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

7.6. LOGICAL MATRICES 227

differences in measures of skill in various sports are important for reasons such
as tournament seeding and sports wagering. Some of the ranking schemes
created for these purposes include transitive results as contributing data.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

Chapter 8

Relations

As a reader of English prose, the word ‘relation’ might cause you to think
about your relatives — parents, children, spouse, etc. – because you are
related to them biologically or legally. This mental association is useful in this
chapter, too, because we can represent such connections, and many others,
with relations.

Before reading on, we need to ask: How confident do you feel about sets in
general, and Cartesian Products in particular? The Math Review appendix
and the Additional Set Concepts chapter can help prepare you for this chap-
ter’s content. For that matter, reviewing the Matrices chapter wouldn’t hurt,
either.

8.1 (Binary) Relations
The simplest variety of relation is a binary relation (a.k.a. dyadic, 2–adic or
2–ary relation), and is so named because such relations are sets of pairs of
elements. If you’re guessing that this is where Cartesian Products come in to
the story, you’re right.

Definition 53: (Binary) Relation (binary) relation

A (binary) relation from a set X (the domain) to a set Y (the codomain)
is a subset of the Cartesian Product of X and Y (X × Y).

In general, a binary relation has two base sets, the ‘from’ base set (the
domain) and the ‘to’ base set (the codomain). In many relations, the domain

229

230 CHAPTER 8. RELATIONS

Hank,Irene

Earl,Denise Ben,Alice

Frank Gary Carl

Figure 8.1: A Family Tree

and codomain are the same set, simply called the base set of the relation. In
that situation, the wording “on set W” is usually used instead of “from set
W to set W .” The phrases have the same meaning; the former is just less
awkward to write or speak.

Example 151:

Figure 8.1 shows a simple family tree. Hank and Irene have two children,
Denise and Ben. Denise and Earl also have two children, Frank and Gary,
while Ben and Alice have one child, Carl. The set of family members is
M = {Alice,Ben,Carl,Denise,Earl,Frank,Gary,Hank, Irene}.

We can define a binary parent relation, P , on the set M (that is, from M
to M) by creating a set of ordered pairs such that the left member of the
pair is a parent and the right member is a child of that parent. That is,
P will contain the ordered pair (Hank,Denise) because Hank is a parent
of Denise. Here is the complete relation P :

P = {(Hank,Denise), (Hank,Ben), (Irene,Denise), (Irene,Ben),
(Earl,Frank), (Earl,Gary), (Denise,Frank), (Denise,Gary),
(Ben,Carl), (Alice,Carl)}.

How do we know that P is a relation on M? Easy! P is a subset of
the Cartesian Product M ×M — that’s all we need for P to be a binary
relation. There are many other subsets of M ×M that are also binary
relations,1 but none of them represent the family tree of Figure 8.1 using
(parent,child) ordered pairs.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

8.1. (BINARY) RELATIONS 231

When elements of domains and codomains are paired in a relation, we say
that they are related within the context of the relation.

Definition 54: Related related

When L is a relation and (x, y) ∈ L, x is said to be related to y and is
denoted “x L y”.

If you think that this “x L y” notation looks strange now, wait until you
see it in an example!

Example 152:

In Example 151, Hank is the parent of Denise. One way to represent
this fact is by using set membership notation: (Hank,Denise) ∈ P . This
is perfectly fine, as P is a set and (Hank,Denise) is an element of P .
Another way is to use the notation introduced by the definition of related:
Hank P Denise. (Told you it would look strange!)

The “x L y” notation looks a little less odd with numbers.

Example 153:

Let R = {(x, y) | x% y = 2}, where x, y ∈ {2, 4, 6, 8, 10}. For which pairs
of values is x R y true?

We need values x and y where y > 2 and x is two more than a multiple
of y. (When y = 2, two more than a multiple of y is another multiple of
y, and so x% y = 0.) For the given domain, 6 R 4, 10 R 4, 8 R 6, and
10 R 8 are all true, and so R = {(6, 4), (10, 4), (8, 6), (10, 8)}.

1How many others? The total number of possible ordered pairs formed from our set M
of family members is |M ×M | = |M | · |M | = 9 · 9 = 81. Next, think back to power sets,
which is where we learned that there are 2|S| possible subsets of a set S. Here, there are 281

possible subsets of M ×M , and thus 281 possible relations, of which P is just one. So, there
are 281 − 1 = 2, 417, 851, 639, 229, 258, 349, 412, 351 other relations.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

232 CHAPTER 8. RELATIONS

Let’s consider a slight variation on Example 153:

Example 154:

Let R = {(x, y) | x% y = 1}, where x, y ∈ {2, 4, 6, 8, 10}. For which pairs
of values is x R y true?

None of them! Our domain has only multiples of two, meaning that
we can produce only remainders that are multiples of two,2 and so a re-
mainder of one is impossible. Thus, R = ∅.

To take the example a step further: When R = ∅, is R still a relation?
Yes! The empty set is a subset of any set, which means that R is a
subset of the Cartesian Product of {2, 4, 6, 8, 10} with itself, meeting the
conditions of the definition of ‘relation.’

This book will not use the “x L y” notation very often, but other authors
do use it, which is why you need to be familiar with it.

8.2 Creating Relations from Relations

We have seen that the idea of a relation is rather straight–forward, and that
we can use set–builder notation to describe the Cartesian Product subsets
that represent our situations. Another approach to the creation of relations is
to build new relations from existing ones, rather than defining them directly
from one or more base sets.

There are a variety of ways to build relations from other relations. One
way is through the application of set operators such as union, intersection, and
difference. Relations are sets, after all. But are the results of these operators
actually relations on the same base set(s)? Are there other ways to build
relations from existing relations? And, why would we want to build relations
in these ways? This section will provide some answers to these questions.

2Yes, zero is a multiple of two. The product of any integer with x produces a multiple
of x. 0 · 2 = 0, so zero is a multiple of two.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

8.2. CREATING RELATIONS FROM RELATIONS 233

8.2.1 Relations from Relations using Set Operators

If you don’t remember how the set operators union (∪), intersection (∩),
difference (−), and complement (2) operate, we suggest you review the set
sub–section of Appendix A (Math Review) before reading further.

Example 155:

Consider the relation C = D × D, where D = {4, 5, 6}. That is, C =
{(4, 4), (4, 5), (4, 6), (5, 4), (5, 5), (5, 6), (6, 4), (6, 5), (6, 6)}. Let:

EQ = {(x, y) | x = y} = {(4, 4), (5, 5), (6, 6)}, and
LT = {(x, y) | x < y} = {(4, 5), (4, 6), (5, 6)},

where x, y ∈ D for both. (Yes, normally we use single–letter set iden-
tifiers, but EQ for ‘equals’ and LT for ‘less than’ are more meaningful
names.)

Questions: Is EQ ∪ LT a relation on D? If so, what does it represent?

Yes, the union of two sets on D must also be a relation on D. Here’s
why. All that the union of two relations does is collect the ordered pairs
of each into a new third relation (ignoring any duplicates, of course). The
ordered pairs are not changed in this process. As a consequence, the re-
sulting relation’s content must be a collection of ordered pairs on D, and
thus, as a subset of D ×D, a relation on D.

As for what EQ ∪ LT represents, we hope you have already figured it
out. If we collect together all of the pairs representing ‘equal to’ and
those representing ‘less than,’ the result is the set of ordered pairs repre-
senting ‘less than or equal to.’ We’ll label it as LE:

LE = {(x, y) | x ≤ y} = {(4, 4), (4, 5), (4, 6), (5, 5), (5, 6), (6, 6)}

because we’ll use it in the next example.

The reasoning for why the union of two relations on a set is also a relation
on the same set holds for intersection and difference, too: We’re forming

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

234 CHAPTER 8. RELATIONS

relations from ordered pairs provided by the given relations. Example 156
demonstrates the utility of those two operators.

Example 156:

We’ll continue where Example 155 stopped. Let’s define one more rela-
tion, GE:

GE = {(x, y) | x ≥ y} = {(4, 4), (5, 4), (5, 5), (6, 4), (6, 5), (6, 6)}

What do the relations LE ∩GE and LE −GE represent?

Intersection retains the ordered pairs that are in both of the given re-
lations. The common concept between ≤ and ≥ is equality, which is why
LE ∩GE = {(4, 4), (5, 5), (6, 6)} = EQ.

We can think of LE − GE as starting with the content of LE, from
which we ‘remove’ the ordered pairs that are also found in GE. That is,
we remove the (x, x) pairs. Removing the pairs that represent equality
from LE leaves only those that represent ‘less than’: LE −GE = LT .

Set complement needs a little more justification, because it doesn’t directly
re–use the content of the input relations as union, intersection, and difference
do. Recall that the complement of a set S is the set of all of the elements
of the universe that are not in S. When S is a relation, S is all of the
ordered pairs from the universe (for our running example, the universe is C,
the Cartesian Product) that are not in S. Stated in terms of our example:
S = C−S = (D×D)−S. This expression shows that, because complement is
defined in terms of set difference, we are actually still re–using ordered pairs;
we just had to dig a little bit to uncover that fact.

Example 157:

Recall that EQ = {(4, 4), (5, 5), (6, 6)} (from Example 155). What is EQ?

EQ contains all of the ordered pairs representing equality. If we remove
equality from the universe, what remains is inequality: EQ = U −EQ =

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

8.2. CREATING RELATIONS FROM RELATIONS 235

{(4, 5), (4, 6), (5, 4), (5, 6), (6, 4), (6, 5)}.

There’s one more set operator that we haven’t discussed in the context
of creating relations from relations: Cartesian Product. We left it for the
end for a good reason: The Cartesian Product of two binary relations is not
another binary relation; it’s a 4–ary 4–ary relation, or tetradic, relation. That is, its content
isn’t ordered pairs, it’s ordered quadruples. Because the result isn’t a binary
relation, we have no use for it . . . at the moment. The idea of computing
Cartesian Products of relations has definite value. We’ll revisit this idea in
Section 8.2.4.

8.2.2 Relations from Relations using Inversion

Return with us now to those thrilling days of 3 . . . Chapter 1, when we learned
that the converse of the implication p→ q is the implication q → p— we sim-
ply exchanged the positions of the antecedent and the consequent. Applying
this idea of exchanging positions to the elements within the ordered pairs of
a relation creates the converse relation, also known as the inverse relation.4

Definition 55: Inverse Relation inverse relation

The inverse (a.k.a. converse) of a relation R from set A to set B is the
relation R−1 = {(b, a) | (a, b) ∈ R} from B to A, where a ∈ A and b ∈ B.

Conversationally, R−1 has R’s ordered pairs, but the content of each pair
is in the opposite order.

3. . . yesteryear! That was part of the usual opening to “The Lone Ranger” radio program.
4Given what we know of the terms ‘inverse’ and ‘converse’ in logic, this naming reuse

is unfortunate, but only a little. In logic, inverse and converse are different adjustments to
p→ q, but the inverse (¬p→ ¬q) and converse (q → p) are logically equivalent, giving some
support to the idea that the terms ‘inverse relation’ and ‘converse relation’ can have the same
meaning. As if two names for one idea isn’t enough, there are others, including ‘reciprocal,’
‘opposite,’ ‘dual,’ and ‘transpose.’ We’ll stick with ‘inverse.’ As for other notations . . . don’t
ask.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

236 CHAPTER 8. RELATIONS

Example 158:

Example 151 defined the parent relation, P , that matched the content of
the family tree in Figure 8.1. What does the inverse relation P−1 repre-
sent?

Recall that:

P = {(Hank,Denise), (Hank,Ben), (Irene,Denise), (Irene,Ben),
(Earl,Frank), (Earl,Gary), (Denise,Frank), (Denise,Gary),
(Ben,Carl), (Alice,Carl)}

on the set M = {Alice,Ben,Carl,Denise,Earl,Frank,Gary,Hank, Irene}.
Swapping the elements of the ordered pairs creates a relation that defines
the child relation C = {(x, y) | x is a child of y} on M . That is:

P−1 = C = {(Denise,Hank), (Ben,Hank), (Denise, Irene), (Ben, Irene),
(Frank,Earl), (Gary,Earl), (Frank,Denise), (Gary,Denise),
(Carl,Ben), (Carl,Alice)}

In Example 158, the relation is on a set. Having the domain and codomain
be the same set is necessary for R−1 to also be a relation on the same base
set, but is not a requirement for the result to be called an inverse relation.

8.2.3 Relations from Relations using Relational Composition

The definition of relational composition is a bit mind–numbing. So, rather
than start this third way to build relations from relations with the definition,
we’ll start with an example. Don’t worry; we’ll bore you with the definition
soon!

Example 159:

In Miss Othmar’s class, she records the traditional A–B–C–D–F grades
of her students, but highlights them in her grade book with different col-
ors. This makes for a two–step grading process: Record a letter–grade for
each student, and highlight each student’s name with the letter–grade’s
color. Each step has a corresponding relation.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

8.2. CREATING RELATIONS FROM RELATIONS 237

The first step, that of recording the grade for each student, creates the
relation G. Here is the content of G, for a subset of four of Miss Othmar’s
students:

G = {(Amos,D),(Jane,B),(Levi,D),(Ruth,A)}

For the colors, she uses a red–yellow–blue diverging palette, which we
will label with K to avoid confusion with the grade ‘C’:

K = {(A,blue),(B,sky),(C,yellow),(D,orange),(F,red)}

(‘Sky’ is a light blue color.) When she is done, Miss Othmar looks at
the highlighted names and realizes that her two–step process has created
a new relation M from a merging of G and K that pairs student names
with colors:

M = {(Amos,orange),(Jane,sky),(Levi,orange),(Ruth,blue)}

A diagram can help make sense of the connections between the ordered
pairs in G and K. Consider Figure 8.2, starting with the (Amos,D) pair,
and note the arrow pointing at Amos. Follow that arrow as it leaves
(Amos,D) from the D and enters the (D,orange) pair at its D. Finally,
it leaves from ‘orange’ (as does another arrow). This sequence of arrows
shows the connection that forms the ordered pair (Amos,orange) in the
new relation. All of the other ordered pair matches have their own se-
quences of arrows. Note that reusing ordered pairs, as this example does
with (D,orange), is fine.

The ‘merging’ of two relations to create a third, as demonstrated in Exam-
ple 159, is called relational composition. Besides needing two existing relations,
we need the ‘to’ set of one relation to be the same as the ‘from’ set of the other.
This enables an overlapping of the ordered pairs that makes the composition
possible. In Example 159, the shared set is the set of letter grades.

Now that you have seen a practical example of relational composition,
the definition should be significantly less mind–numbing than it would have
otherwise been. Even so, you’ll still want to read it carefully!

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

238 CHAPTER 8. RELATIONS

K = {(A,blue),(B,sky),(C,yellow),(D,orange),(E,red)}

G = {(Amos,D),(Jane,B),(Levi,D),(Ruth,A)}

Figure 8.2: Relational Composition: Names to Grades to Colors.

Definition 56: Relational Compositionrelational composition

Let G be a relation from set A to set B, and let F be a relation from
the same set B to set C. The relational composition of relations F and
G, denoted F ◦G (LATEX: \circ)5, is the relation of ordered pairs (a, c)
such that (a, b) ∈ G and (b, c) ∈ F , where a ∈ A, b ∈ B, and c ∈ C.

Example 160:

At Watson–Deer Elementary School’s Mid–Morning Recess games, the
playground monitors award gold, silver, bronze, and pewter medals (well,
certificates; they’re cheaper) for first through fourth places, respectively.6
In this month’s jumprope endurance challenge, first place went to Lua,
second was shared by Eve and Abe after an unfortunate collision, and
fourth went to Kai. How can we create a relation that pairs the ‘medals’
with the students?

If you haven’t already finished sarcastically muttering “Duh, using re-
lational composition, maybe?”, we’re disappointed. Let’s do it. We have
two relations, M for the ‘medals’ and P for the places:

M = {(gold,first),(silver,second),(bronze,third),(pewter,fourth)}

5Does this notation look familiar? It’s also used for functional compositionfunctional composition , which you’ve
probably encountered before. We will cover it in the next chapter, where we will compare
it to relational composition.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

8.2. CREATING RELATIONS FROM RELATIONS 239

P = {(first,Lua),(second,Eve),(second,Abe),(fourth,Kai)}

Next, we need to order the relations correctly. Is it M ◦P or P ◦M? Ac-
cording to the definition, the shared element must be the second member
of the ordered pairs of the second relation listed. (In the definition, G is
listed second in “F ◦G,” and G’s ordered pairs have the shared values —
the b’s — second.) Here, the place names are shared by both relations,
and they appear second in M ’s ordered pairs. Thus, M needs to be sec-
ond in the notation, making the correct ordering P ◦M .

Now to create P ◦M ’s ordered pairs. We take each of the ordered pairs of
the second relation (M) in turn, matching them with the corresponding
ordering pair(s) from P to form the (medal,student) pairs we want:

P ◦M = {(gold,Lua),(silver,Eve),(silver,Abe),(pewter,Kai)}.

Figure 8.3 shows the visualization. Note that in this example, we use
(silver,second) twice, because we have two elements of P that start with
‘second.’ Also note that we do not have any arrows running through
(bronze,third) at all, because there wasn’t a third place finisher (due to
the tie for second).

Are you curious as to why our diagrams are constructed to have the arrows
pointing bottom–to–top instead of top–to–bottom? We did this to better
match how people are likely to write the relations. Given a composition F ◦G,
it’s natural to write the content of F first and that of G second. Doing this
means that the arrows will go bottom–up.

8.2.4 Other Means of Creating Relations from Relations

Time to pick up where Section 8.2.1 feared to tread: Using Cartesian Product
on relations. In that section we mentioned that the result of the Cartesian
Product of two binary relations creates a 4–ary relation. While such a relation
isn’t useful in a discussion of binary relations, it is more generally useful.
Here’s how.

6“Pewter?” Yes, pewter! It’s an alloy of tin, copper, and other metals. The U.S. Figure
Skating Championships started awarding pewter medals to fourth place finishers in 1959. It
goes without saying that the idea hasn’t caught on with other sports, but it works well with
our example.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

240 CHAPTER 8. RELATIONS

P ◦M

In

Out
P = {(first,Lua),(second,Eve),(second,Abe),(fourth,Kai)}

M = {(gold,first),(silver,second),(bronze,third),(pewter,fourth)}

Figure 8.3: Relational Composition: Medals to Places to Students.

When people and organizations need to store a lot of information about
an endeavor, such a business, they are likely to use a software product known
as a DBMSdbms (short for Database Management System) to both store the in-
formation and provide convenient access to it. Many DBMSes organize the
information entrusted to them using the relational modelrelational model , which is so named
because the stored information is arranged into relations. Relations are good
at storing basic types of information, such as numbers and words, but not
so good with more complex types, such as songs and movies. Many current
relational DBMSes have been augmented to support such types, but other,
non–relational, types of DBMSes exist, too.

Example 161 demonstrates the utility of Cartesian Product to a relational
DBMS.

Example 161:

Professor Plum has two relations that describe his small graduate semi-
nar. The first, the class roster, has the ID, name, and email of each of the
three registered students. The second, a seating chart, pairs each student
with a chair in the room. As sets, we would write them like this:

R = {(21,Boddy,core),(52,Peacock,peahen),(68,Mustard,mustum)}
S = {(A05,52),(B19,21)}

. . . but when viewed as relations in a DBMS, they would be structured as
tables with meaningful names and labels:

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

8.2. CREATING RELATIONS FROM RELATIONS 241

Roster

SID Name Email
21 Boddy core
52 Peacock peahen
68 Mustard mustum

Seating

Chair SID
A05 52
B19 21

Apparently, Mustard was absent the day the professor made the seat-
ing chart, but the DBMS won’t be bothered by this.

The professor would like to confirm with each student their chosen seat,
but the seat info is in one relation and the email addresses are in another.
Cartesian Product to the rescue! Using that operator, the DBMS can pair
up all of the roster information with all of the seating information in a
5–ary relation:

Roster × Seating

SID1 Name Email Chair SID2
21 Boddy core A05 52
21 Boddy core B19 21
52 Peacock peahen A05 52
52 Peacock peahen B19 21
68 Mustard mustum A05 52
68 Mustard mustum B19 21

The result contains all possible associations of the ordered triples from
Roster and the ordered pairs from Seating. The table rows that the pro-
fessor needs, shown in bold in the table, are the two in which the SIDs
are equal (because they are the associations that combine the information
belonging to the same students).

Example 161 stopped before Professor Plum was satisfied — how is the
professor to get just the subset of rows with equal SIDs from the Cartesian
Product? And how can Mustard be identified as needing to receive a “see me”
email to get a seat? The basic group of set operators does not include operators
for these purposes, but relational DBMSes provide them. The select operator

select operatorcan answer the first question. The combination of Cartesian Product with

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

242 CHAPTER 8. RELATIONS

select is so commonly used in relational DBMSes that another operator, the
join operatorjoin operator , was created to perform both actions with a single command. A
variation known as outer joinouter join can be used to help answer the second question.

Curious to know more about relational DBMSes, their connections to sets,
and what else they can do? Database classes are commonly offered by Com-
puter Science departments and business schools. Talk with an academic ad-
visor . . . today!

8.3 Graph Representations of Relations

So far, our only way to represent a relation is as a set of ordered pairs. That
fits the definition of ‘relation’ neatly, but it isn’t always a convenient repre-
sentation to use when we need to identify characteristics of relations, which
we will need to do soon.

A representation of relations that is far more visual is one based on a data
structure known as a graph. You may have already learned a few things about
graphs; if so, this sub–section will be (mostly?) review. If not, don’t worry;
although graphs is a large topic, we only need a small subset for our purposes.

8.3.1 Graphs

The connection between graphs and relations is made clear by the definition.

Definition 57: Graphgraph

A graph G = (V,E), where V is a finite, non–empty set of vertices and
E is a binary relation on V .

By this definition, a graph isn’t so much a way to visualize relations as it
is a slight variation on the definition of binary relations. So much for graphs
being deep and mysterious!7

Nothing in our definition of graphs tells us what a graph looks like. Easily
rectified: Think of a vertex as a dot on a piece of paper. An ordered pair
is a pair of dots with an arrow (in graph terminology, an edgeedge) drawn from
the left member of the pair to the right member of the pair. When we use

7Yeah, so, OK: Basic graphs aren’t deep and mysterious. Dig a little deeper, and they
can get pretty complex. Happily, basic graphs are all that we need in this chapter.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

8.3. GRAPH REPRESENTATIONS OF RELATIONS 243

an arrow to indicate ordering of a pair of vertices, the graph is known as a
directed graph, or digraph digraphfor short.

You might be wondering: May a vertex have an edge that points back
to itself? Yes! This type of edge is known as a self–loop self–loop. We will soon see
that self–loops are very helpful for recognizing one of our upcoming relation
properties.

You might also be wondering: The definition explicitly says that the rela-
tion is on V . Does this mean that “from — to” relations cannot have graph
representations? No! We can handle such relations with a simple adjustment:
Allow V to be the union of the relation’s ‘from’ and ‘to’ sets.

This is all we need to know about graphs to create diagrams that visualize
relations!

8.3.2 Using Graphs to Represent Relations

In the near future (the next section!), we will use graphs to help us understand
a variety of properties of relations. For the graphs to be most useful, they
need more than vertices and edges — they also need clarity, and, well, a
touch of aesthetics. Aesthetics is the study and appreciation of beauty, and
is applicable here because the ‘attractiveness’ of our graphical representations
of relations will add to their clarity.8 Rather than trying to explain, we will
demonstrate with a couple of examples.

Example 162:

In Example 153, our base set was {2, 4, 6, 8, 10}. When creating a graph
of an “on” relation, the base set is also our collection of vertices, meaning
that the visualization of the graph has five dots. As a set, the relation
R consists of four ordered pairs: {(6, 4), (10, 4), (8, 6), (10, 8)}. Thus, our
visualization also has four edges (arrows).

Figure 8.4 shows three different graphs, all of which represent R. The
first version, 8.4(a), has two sets of vertices, one for the domain and one
for the codomain. This isn’t a good representation for this example, be-
cause relation R is an “on” relation, not a “from one set, to a second

8“Mathematics, rightly viewed, possesses not only truth, but supreme beauty.” –
Bertrand Russell. The standard for our figures in this book is less lofty: “Well, my eyes ain’t
bleedin’!”

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

244 CHAPTER 8. RELATIONS

10

8

6

4

2

10

8

6

4

2

(a)

10

8

6

4

2

(b)

108642

(c)

Figure 8.4: Three Graphs of the Relation of Example 153

set” relation. By representing the single base set {2, 4, 6, 8, 10} of R as
two separate groups, we are improperly implying that the domain and
codomain sets are different sets.

Figure 8.4(b) has just one set of vertices, arranged in a circle. This
addresses our concern about Figure 8.4(a), and also ‘de–clutters’ the vi-
sualization. Figure 8.4(c) opts for a linear arrangement of the vertices,
providing a more compact graph.

For relation R, either (b) or (c) is an acceptable graph; which one is
‘better’ is mostly a matter of taste.

Example 163:

In the English alphabet, the distinction between consonants and vowels
is based on whether or not the human vocal tract is restricted when pro-
ducing the sound.

Of the first five letters of the English (a.k.a. Basic Latin) alphabet, ‘A’
and ‘E’ are vowels; the rest (‘B’, ‘C’, and ‘D’) are consonants. The set S
of the (letter,sound–type) pairs is a relation from the set of the first five
letters to the set of speech sound types: S = {(A,vowel),(B,consonant),
(C,consonant),(D,consonant),(E,vowel)}.

We could just scatter the seven vertices (the five letters plus ‘consonant’
and ‘vowel’) and start drawing arrows, but, as Figure 8.5(a) shows, the
result can be disorganized.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

8.4. FOUR PROPERTIES OF BINARY RELATIONS 245

A

B

C

D

E

consonant

vowel

(a)

A B C D E

consonant vowel

(b)

Figure 8.5: Two Graphs of the Relation of Example 163.

When the domain and codomain are separate sets, in the interest of clar-
ity, we will group the domain and codomain elements separately. Doing
so will make it easier for us to answer basic questions at a glance, such as
“Do all of the letters have an associated sound type?”, and “How many
of the letters are vowels?”. One such graph is shown in Figure 8.5(b).

Example 164:

The family tree diagram (Figure 8.1) can be re–drawn as a digraph, as
shown in Figure 8.6. Typically, family trees do not include explicit arrows,
because the orderings are well–understood. Including the extra lines and
arrowheads only adds clutter, not clarity.

8.4 Four Properties of Binary Relations
Fair warning: This section will present a few concepts that are likely to be
confusing and maybe even headache–inducing, at which point you may won-
der, “Why do I have to learn this???”. Hopefully, at the same time you ask
that question, you will remember this paragraph. Individually, most of these
properties may not appear to be helpful. Together, though, they are used
to define additional properties that have practical applications in computer
science. Please stay focused; your patience will be rewarded.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

246 CHAPTER 8. RELATIONS

Hank Irene

Earl Denise Ben Alice

Frank Gary Carl

Figure 8.6: The family tree of Figure 8.1 re–drawn as a digraph.

Something else to know before we dive in: All four of the following proper-
ties apply only to relations defined “on” a set. This means, for example, that
there is little value in asking if relation S from Example 163 possesses any of
these properties, because the answer will always be ‘no.’

8.4.1 Reflexivity

Reflexivity is the easiest of the four, both to define and to understand, making
it a good property to examine first. This will not be a short sub–section,
though, as we will take advantage of reflexivity’s relative simplicity to make
several points that have value for the following properties, too.

In English, ‘reflexive’ is an adjective used to describe something that is
pointed back toward its own beginning. For example, a song about songs is
reflexive. Another: A dog chasing its own tail is playing reflexively. With
those examples in mind, the definition of reflexivity as it applies to relations
is easy to understand and remember.

Reflexive Relations

In conversational English, when a relation is reflexive, each member of the
base set is related to itself. More formally:

Definition 58: Reflexivityreflexivity

A (binary) relation R on a set A is reflexive if (a, a) ∈ R, ∀ a ∈ A.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

8.4. FOUR PROPERTIES OF BINARY RELATIONS 247

Example 165:

Consider the relation N = {(x, y) | x and y have the same first name}
on the set M = {Michael Douglas}. Is N even a relation on M? If it is,
is it a reflexive relation on M?

Let’s start by showing all of the ordered pairs inN — this won’t take long:

N = {(Michael Douglas, Michael Douglas)}

For N to be a relation on M , it must be a subset of M ×M . As de-
fined above, N = M ×M . Because every set is a subset of itself, yes, N
is a subset of M ×M , and so N is a relation on M .

Now for reflexivity: For N to be a reflexive relation on M , it must pass
the test supplied by the definition of reflexivity. The definition says that
N must contain the ordered pair (x, x) for each x ∈M . Because M con-
tains only one name, the ordered pair that N must contain to be reflexive
is (Michael Douglas, Michael Douglas), and it does. Thus, N is reflexive.

Example 165 was about as small an example of a reflexive relation as we
can create, but we can go smaller. Even better, going smaller is worth our
time.

Example 166:

Somewhere around the end of the movie “The Ant-Man and the Wasp,”
Ant-Man’s support team, well, takes a powder.9 We can represent mem-
bers of the non–existent support team with the set T = ∅. Is the Carte-
sian Product T × T a reflexive relation?

Was your first thought a quick ‘no’? We don’t blame you for think-
ing that, but the answer is actually ‘yes.’ T × T is a relation on T . It’s
also true that T ×T = ∅, making it the empty relation. (Remember, any
set is a subset of itself, and the empty set is a set.)

How can the empty relation be reflexive? Vacuously! The definition

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

248 CHAPTER 8. RELATIONS

is conditional: A (binary) relation R is reflexive IF (a, a) ∈ R, ∀a ∈ A.
For every element t of T , we must have the ordered pair (t, t) in the re-
flexive relation. There are no elements in T , so there can be no ordered
pairs. Thus, there are no ordered pairs that must appear in the relation
in order for it to be reflexive. This is why our empty relation vacuously
satisfies the definition.

We defined vacuous truth in Chapter 1 and explained vacuous proof in
Chapter 4, but this was our first opportunity to use the concept. More are
coming!

Example 167:

Two–letter words are really ordered pairs. For example, “to” is an En-
glish word, but “ot” is not — order matters.

Let W be a relation on the set L = {a, e, h} such that (x, y) ∈ W when
xy (the concatenation of x and y) is an English word. According to the
6th edition of “The Official Scrabble Players Dictionary,” six two–letter
words can be formed from the letters in L: ‘aa’, ‘ae’, ‘ah’, ‘eh’, ‘ha’, and
‘he’. Thus, W = {(a, a), (a, e), (a, h), (e, h), (h, a), (h, e)}. Is W reflexive?

(a, a) ∈ W , but (e, e) 6∈ W , and so W is not reflexive. There is no
reason to check (h, h) — as soon as we know that one reflexive ordered
pair is missing, we know that the relation cannot be reflexive.

Recognizing Reflexivity in Graphs of Relations

Checking for reflexivity in a set of ordered pairs isn’t very difficult, so long as
the base set of the relation isn’t too large. Checking for reflexivity in a graph
is even easier.

Figure 8.7 contains graphs of Examples 165 and 167. Take a few moments
to examine them, keeping in mind that the first is reflexive and the second
is not. The relevant difference is found in the self–loops: Reflexive relations

9The phase “to take a powder” is slang for leaving in a hurry. If you don’t already see
the connection to the movie, go watch it . . . after you’ve also watched a pile of prequels!

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

8.4. FOUR PROPERTIES OF BINARY RELATIONS 249

Michael Douglas a

e

h

Figure 8.7: Graphs of the Relations of Examples 165 (left) and 167.

have self–loops on all vertices. Or, relations that are not reflexive are missing
at least one self–loop.

The self-loops, at least how we have drawn them, look a bit like earrings.
This mental image is a nice way to remember reflexivity in graphs. People
usually feel that a missing earring is bad news. Similarly, a missing earring is
bad news for reflexivity.

8.4.2 Symmetry

You may be familiar with the word symmetry in the context of bilateral (a.k.a.
reflection) symmetry or radial (a.k.a. rotational) symmetry in biology. When
discussing relations, symmetry has a very different meaning.

Symmetric Relations

Definition 59: Symmetry symmetry

A (binary) relation S on set B is symmetric when (b, c) ∈ S iff (c, b) ∈ S.

In English, this definition tells us that when an ordered pair (x, y) is in a
symmetric relation, the ordered pair (y, x) is also in the relation.

Appropriately, relational symmetry is defined in terms of a logical operator
(biimplication) whose truth table column is horizontally symmetric: The top
half of the column (T

F) is a mirror–image of the bottom half (F
T).

Examples are just as helpful with symmetry as they are with reflexivity.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

250 CHAPTER 8. RELATIONS

Example 168:

Vivian, Willa, and Ximena have registered as a team for an intramural
3–on–3 basketball tournament. Let T = {(x, y) | x and y are teammates}
on the set of players P = {Vivian,Willa,Ximena}. Is T symmetric?

To be symmetric, (x, y) ∈ T if and only if (y, x) ∈ T . It is clear that
that logical statement holds in this example, because any two people in
the set P are teammates, regardless of the order in which we list them.
For instance, if (Vivian,Willa) ∈ T then (Willa,Vivian) ∈ T , and if
(Willa,Vivian) ∈ T then (Vivian,Willa) ∈ T . This is the case for any
pair of teammates drawn from P . Therefore, yes, T is symmetric.

As long as this example is fresh, let’s ask (and answer) a review question
about it: Is T reflexive?

The answer depends on the definition of “teammate.” Is a person his
or her own teammate? We hope you’ll agree that the answer is ‘no.’
That is, (Vivian,Vivian) 6∈ T , which is enough to prove that T is not
reflexive.

Example 169:

We used a two–letter word example (Example 167) to help explain reflex-
ivity. Recall that the relation isW = {(a, a), (a, e), (a, h), (e, h), (h, a), (h, e)}
on the set W = {a, e, h}. Is W symmetric?

We can answer this via inspection of the ordered pairs in W . All that
we need to do is consider each ordered pair (x, y) ∈ W and verify that
(y, x) ∈W . If that is always true, W is symmetric.

Let’s start with (a, a). If (a, a) ∈ W , then it’s clear that the ordered
pair with the content in reverse order (that is, (a, a)) will also be in the
relation, because it’s the same ordered pair! This means that we can
ignore all such ordered pairs (that is, the reflexive ordered pairs) when
testing for symmetry.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

8.4. FOUR PROPERTIES OF BINARY RELATIONS 251

The next ordered pair is (a, e). The reversed pair, (e, a), is not in W .
This means that “if (a, e) ∈ W then (e, a) ∈ W” is false, which also
means that “(a, e) ∈ W iff (e, a) ∈ W” is false. Because the iff is always
true in a symmetric relation, we know that W is not symmetric, without
having to test any more pairs of ordered pairs.

Note that W exhibits symmetry with the pairs (a, h) and (h, a), as well
as with the pairs (e, h) and (h, e). That’s two of the three that we need
for symmetry, but that’s not good enough – we need three out of three.

Example 170:

Example 165 introduced the relation N = {(Michael Douglas,
Michael Douglas)} on the set {(Michael Douglas}. N is reflexive, but is
it symmetric?

Let’s conduct the same test that we used in Example 169: For each
ordered pair (x, y) ∈ N , is (y, x) ∈ N? If that’s always true, then N is
symmetric. N only has one ordered pair, making this test easy to per-
form. (Michael Douglas,Michael Douglas) ∈ N , so we need the reversed
ordered pair, (Michael Douglas,Michael Douglas), to also be in N . Be-
cause it is the same ordered pair, yes, it is in N . As that is the only
ordered pair, and that ordered pair passed the test, then yes, N is sym-
metric.

Here’s another way to see that N is symmetric. N ’s only ordered pair
is a reflexive ordered pair — N has no ordered pairs of the form (x, y)
where x 6= y. Without at least one such ordered pair, we cannot violate
the definition of symmetry. If a relation cannot violate the definition, the
relation must satisfy the definition. By that reasoning, N is (vacuously)
symmetric.

Recognizing Symmetry in Graphs of Relations

Detecting reflexivity in the graph of a relation was pretty easy. Happily,
detecting symmetry in graphs is almost as easy . . . if we draw aesthetically
pleasing graphs!

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

252 CHAPTER 8. RELATIONS

Vivian

Willa Ximena

Vivian

Willa Ximena

Figure 8.8: Two Graphs of the Relation of Example 168.

When a relation is symmetric, its graph will have only “back and forth”
edges. That is, when a symmetric relation has an edge from vertex v to vertex
w, it will also have an edge from w back to v. In a clearly–drawn graph, a
pair of vertices with only one of the two edges will be easily identified. Note
that self–loops are inherently “back and forth” all by themselves, so we can
ignore them whether they exist or not.

Example 171:

Figure 8.8 shows two versions of graphs of the 3–on–3 basketball team
example (Example 168). The graph on the left shows the pairs of edges
plainly, making the symmetry of the relation easy to recognize. The
graph on the right . . . doesn’t. Remember, good visualizations make the
important details clear.

8.4.3 Antisymmetry

This is the most important detail to know about antisymmetry:

Antisymmetry is not the opposite of symmetry!

Puzzled? We sympathize. In English, anti is a prefix meaning “opposite,”
which leads people to believe that an antisymmetric relation is one that is
not symmetric. As we will see, there is a lot of middle ground between a
symmetric relation and an antisymmetric relation, but we will also see that
some relations are both symmetric and antisymmetric.

Can you handle a little more confusion? There’s another property of rela-
tions called asymmetry that is also not the opposite of symmetry, even though

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

8.4. FOUR PROPERTIES OF BINARY RELATIONS 253

the prefix a means “not.”10 Good news! We won’t be defining asymmetry for
a simple reason: This book doesn’t need it.

Antisymmetric Relations

If antisymmetry isn’t the opposite of symmetry, then what does it mean?
Thanks for asking!

Definition 60: Antisymmetry antisymmetry

A (binary) relation A on set D is antisymmetric if (d, e) ∈ A and d 6= e,
then (e, d) 6∈ A, ∀d, e ∈ D.

Conversationally: In an antisymmetric relation, distinct elements are paired
together only once. As with symmetry, the self–loop (a.k.a. reflexive) edges
don’t matter to antisymmetry; they can exist or not.

Example 172:

Drew and Faustina keep track of the relative ages of their offspring with
the relation O = {(x, y) | x is older than y} on their set of children
C = {Poseidon,Zoe,Nikita}. Assuming that Poseidon is 7, newborn Zoe
is 0, and future child Nikita is -2 (what can we say; Drew and Faustina
have a plan), is the relation O antisymmetric?

As a set of ordered pairs, O = {(Poseidon,Zoe), (Poseidon,Nikita),
(Zoe,Nikita)}. For a relation to be antisymmetric, it cannot contain an
ordered pair (y, x) if it already contains the ordered pair (x, y), when
x and y are distinct. Here, that means O cannot have (Zoe,Poseidon),
cannot have (Nikita,Poseidon), and also cannot have (Nikita,Zoe). O
contains none of these pairs, thus O is antisymmetric.

10Makes you wonder what people were drthinking when they named these properties,
doesn’t it? They have to be related to whomever decided that flammable and inflammable
should have the same meaning. (Before you write us: We already know why they have the
same meaning. Save your word–origin wisdom for someone on Reddit who really needs it.)

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

254 CHAPTER 8. RELATIONS

Figure 8.9: How Drew and Faustina met. Credit: “Futurama” episode
2ACV07 (“Put Your Head on My Shoulders”).

Example 173:

In Example 167 and Example 169, we learned that the two–letter word
relation is not reflexive and also not symmetric. Is it or is it not antisym-
metric?

Recall thatW = {(a, a), (a, e), (a, h), (e, h), (h, a), (h, e)} on L = {a, e, h}.
We can testW an ordered pair at a time, checking each for the ‘matching’
(reversed) ordered pair that would destroy W ’s dream of antisymmetry.
(a, a) is a self–loop, which the definition of antisymmetry tells us to ignore.
The next pair is (a, e). If (e, a) ∈ W , we know W is not antisymmetric
and can stop. But, (e, a) 6∈ W , so we continue. Next is (a, h). This
time the reversed ordered pair (h, a) is in W . Because a and h are paired
together twice in the relation, W is not antisymmetric.

Combined, Examples 169 and 173 demonstrate that relations can easily
be both not symmetric and not antisymmetric. We mentioned at the start
of this sub–section that a relation can be both symmetric and antisymmetric.
The next example demonstrates that we’ve already seen one such relation.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

8.4. FOUR PROPERTIES OF BINARY RELATIONS 255

Poseidon Zoe

Nikita

a

e

h

Michael Douglas

Figure 8.10: Graphs of the Relations of Examples 172, 173, and 174.

Example 174:

Back in Example 165, we introduced the relation N = {(Michael Douglas,
Michael Douglas)} on the set M = {Michael Douglas} and showed that
it is reflexive. In Example 170, we showed that it was also symmetric,
albeit vacuously. Is N also antisymmetric?

We already spoiled the answer to that question: Yes, N is also anti-
symmetric. Why? For the same reason that N is symmetric: N doesn’t
violate the definition of antisymmetry, which, like the definition of sym-
metry, is conditional. The key part of the definition: “[. . .] if (d, e) ∈ A
and d 6= e, then (e, d) 6∈ A [. . .]” Relation N does not contain any
such (d, e) ordered pairs, meaning that the antecedent of the ‘if’ is false,
which by definition makes the conditional expression true. No ordered
pairs in N violate the definition of antisymmetry, and so, vacuously, N
is antisymmetric.

Recognizing Antisymmetry in Graphs of Relations

Antisymmetry is just as easily detected in a well–drawn graph as is symmetry.
The difference is that, instead of making sure we have only “back and forth”
pairs of edges, we need to make certain that there are no “back and forth”
edges. That is, we want to see only single edges between pairs of vertices.

Figure 8.10 contains the graphs of all three of the relations used in this
sub–section. As with reflexivity and symmetry, only a quick glance is required
to verify the presence or absence of antisymmetry. The left graph clearly has
no “back and forth” arrows (and so its relation is antisymmetric), the center
graph has two such pairs of edges (either of which violates the definition of
antisymmetry), and the right graph obviously has no worrisome edges (mean-

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

256 CHAPTER 8. RELATIONS

ing that its relation is antisymmetric because the relation does not even try
to violate the definition of antisymmetry).

8.4.4 Transitivity

The bad news: While our fourth relation property, transitivity, is easy to ex-
plain, it is harder to detect within relations than are the other three properties.
The good news: Transitivity is also the property that you are most likely to
have seen previously. For example, if I tell you that a = b and that b = c,
you know that a and c must also be equal. That’s transitivity of equality.
What you probably did not know before reading this sentence is that even the
transitivity of equality is based on . . . you guessed it, relations.11

Transitive Relations

As promised, transitivity’s definition is straight–forward.

Definition 61: Transitivitytransitivity

A relation T on set F is transitive if (f, g) ∈ T and (g, h) ∈ T , then
(f, h) ∈ T , ∀f, g, h ∈ F .

Example 175:

Consider the stack of blocks in Figure 8.11, and the concept of “above,”
as in blocks P and I are both above block L.

Let relation A = {(b, c) | b is above c in Figure 8.11} on the set of blocks
B = {E, I,L,P}. Is A transitive?

To answer this question, having A’s set of ordered pairs will help. In
alphabetical order, A = {(I,E), (I,L), (L,E), (P,E), (P, I), (P,L)}.

The definition of transitivity tells that we only need to worry about pairs

11Transitivity in grammars is distinct from transitivity in relations. A transitive verb
requires a direct object to be grammatically correct (e.g., She aced the class.), while an
intransitive verb does not (He slept.).

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

8.4. FOUR PROPERTIES OF BINARY RELATIONS 257

P

I

L

E

Figure 8.11: Example 175’s stack of blocks.

of ordered pairs that share the ‘overlapping’ value (e.g., g in (f, g) and
(g, h)). In a transitive relation, the pairs of the form (f, h) must also be
in the relation. Our task is to identify all of the (f, g) − (g, h) pairs in
the relation and check that the pair (f, h) is also in the relation.

Helpful advice: Be systematic! If you randomly look around for over-
lapping pairs, you are likely to both find some pairs twice and skip some
pairs entirely. The former is just wasted work, but the latter could cause
you to report an incorrect answer.

Here’s our system: Moving left to right, consider each ordered pair in
the relation as our leading (f, g) pair. Scan (also left to right) through
the list of ordered pairs, finding all that start with g, and create all of the
(f, g)− (g, h) pairs. For each such pair of pairs, search for the pair (f, h)
in the relation. If an (f, h) is not in the relation, we can stop, because
the relation cannot be transitive when an (f, h) ordered pair is missing.
But if all of the (f, h) ordered pairs are found, the relation is transitive.

Making a table to keep track of all of the pairs of pairs is worthwhile.
The first (leftmost) ordered pair in A is (I,E), so we start our table’s first
row with it:

(f, g) (g, h) (f, h) Present?
(I,E)

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

258 CHAPTER 8. RELATIONS

Now we check A for ordered pairs that have E as the left value. In
our diagram, the E block is not above any other blocks. Thus, there can
be no ordered pairs in A of the form (E,�). If you’re hoping that this
means we’re done . . . sorry. Remember, the definition is conditional: IF
(f, g) and (g, h) are in T , then so must (f, h). Having just (f, g) doesn’t
allow that condition to be tested, and an untested condition cannot fail.
We must continue our search.

The next ordered pair in A is (I,L). This time, scanning A reveals an
overlapping (g, h) pair: (L,E). For A to be transitive, it must also contain
the (f, h) pair, which is (I,E). A quick search reveals that, yes, (I,E) ∈ A.
(Or we can remember that we just examined it in the first row . . .) This
allows us to complete the second row of the table:

(f, g) (g, h) (f, h) Present?
(I,E) — — —
(I,L) (L,E) (I,E) Yes!

Got the idea? We hope so, because if we continue at this pace, this
example will require many more pages to finish. Let’s skip ahead to this
state of our table:

(f, g) (g, h) (f, h) Present?
(I,E) — — —
(I,L) (L,E) (I,E) Yes!
(L,E) — — —
(P,E) — — —
(P, I) (I,E) (P,E) Yes!

We’re pausing here to make this point: We found one (f, g)− (g, h) pair
that begins with (P, I), but there is another! Block I is above both blocks
E and L; we need to check both of their corresponding ordered pairs. The
final table:

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

8.4. FOUR PROPERTIES OF BINARY RELATIONS 259

(f, g) (g, h) (f, h) Present?
(I,E) — — —
(I,L) (L,E) (I,E) Yes!
(L,E) — — —
(P,E) — — —
(P, I) (I,E) (P,E) Yes!
(P, I) (I,L) (P,L) Yes!
(P,L) (L,E) (P,E) Yes!

Thanks to systematism,12 we have found all four pairs of overlapping
ordered pairs, and found that A contains all of the necessary (f, h) or-
dered pairs that need to accompany them. A is transitive!

Example 175 required more work than did any of our previous relation
property examples. As we warned, checking transitivity is straight–forward
but often requires more effort than does checking the three relation properties
we’ve already covered.

Example 176:

Time for another visit to the two–letter word example (Example 167).
The relation, as a set of ordered pairs, is W = {(a, a), (a, e), (a, h), (e, h),
(h, a), (h, e)} on the set W = {a, e, h}. Is W transitive?

Using the table approach from Example 175, we begin with the ordered
pair (a, a), which is a reflexive ordered pair. We don’t need to spend any
time finding (f, g) − (g, h) matches for such ordered pairs; here’s why.
Whether a reflexive ordered pair is the (f, g) pair or the (g, h) pair, the
other pair will also be the (f, h) pair. For example, (a, a) − (a, e) needs
(a, e) to be in the relation, and (1, 2) − (2, 2) would need (1, 2). In both
cases, the relation needs an ordered pair that it obviously already pos-
sesses. We can’t totally ignore such pairs, though; stay tuned.

In this example, (a, a) is the only ordered pair that doesn’t need a row
in our table, but every little bit helps. So, we start our table with (a, e):

12It is so a word! Systematism is a noun meaning “following a method or system.” On
this we can agree: It’s an uninspiring superpower.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

260 CHAPTER 8. RELATIONS

Figure 8.12: “Sati! Come here, darling. Leave the poor man in peace.” “But,
Papa, he’s Keanu Reeves, not Michael Douglas!” “Even more reason . . . ”
Credit: Warner Bros, “The Matrix Revolutions.”

(f, g) (g, h) (f, h) Present?
(a, e) (e,h) (a,h) Yes!
(a, h) (h, a) (a, a) Yes!

This is why we couldn’t totally ignore (a, a): We needed it to test the
definition’s condition. Onward:

(f, g) (g, h) (f, h) Present?
(a, e) (e,h) (a,h) Yes!
(a, h) (h, a) (a, a) Yes!
(a, h) (h, e) (a, e) Yes!
(e, h) (h, a) (e, a) No!

W was looking good for transitivity for a while, but we soon discov-
ered a missing (f, h) ordered pair. One is all that we need to show that
W is not transitive. (If you complete the table, you’ll find that there are
more missing ordered pairs.)

We bet that you can guess what our last transitivity example is going to
be.

Example 177:

Ah, Michael Douglas; we can’t seem to leave the poor man in peace.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

8.4. FOUR PROPERTIES OF BINARY RELATIONS 261

Example 165’s relation is N = {(Michael Douglas,Michael Douglas)} on
{(Michael Douglas)}. We’ve explained that N is reflexive, symmetric,
and antisymmetric. Is it also transitive?

Having seen our explanations for symmetry and antisymmetry on this
example, you’re probably expecting the answer to be, “Yes, vacuously!”
We’ll give partial credit for that answer, for being both right and wrong.
Read on!

As we covered in Example 175, we need a (f, g)−(g, h) pairing of ordered
pairs to define a (f, h) ordered pair that needs to be missing for the rela-
tion to be declared ‘not transitive.’ N technically does have such a pairing:
(Michael Douglas,Michael Douglas)−(Michael Douglas,Michael Douglas).
We already know that pairings using reflexive ordered pairs cannot cause
the definition to be violated. Still, if we were to complete the table any-
way (and abbreviate in the interest of space) . . .

(f, g) (g, h) (f, h) Present?
(M. D.,M. D.) (M. D.,M. D.) (M. D.,M. D.) Yes!

. . . we would confirm that N does not violate the definition, and so is
transitive. But, because we were actually able to test the condition using
N ’s ordered pair, saying that N ’s satisfaction of the definition is vacuous
is incorrect.

Recognizing Transitivity in Graphs of Relations

As you read the transitivity examples, you were probably wishing that we
would hurry up and get to this sub–section, where the secret to visualizing
transitivity would be revealed. Sorry to say, there is no such secret.

We’ll get straight to the point: Graphs are not nearly as helpful for visualizing
transitivity as they are for visualizing reflexivity, symmetry, and antisymme-
try. For very simple relations, yes, a graph can clearly show transitivity. But,
even for graphs with just a handful of edges, identifying transitivity can be
tricky.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

262 CHAPTER 8. RELATIONS

Poseidon Zoe

Nikita

a

e

h

Figure 8.13: Repeats the Graphs of the Relations of Examples 172 and 167.

Example 178:

Example 172 introduced Drew and Faustina’s family and the relation O
that contains ordered pairs of their children by age. The graph of O is
reproduced in Figure 8.13 (left figure). We can tell at a glance that O is
transitive. No need to exhaustively examine a list of ordered pairs this
time!

Example 179:

The graph of our two–letter word example (the right figure in Figure 8.13)
contains just six edges, yet it is not easy to see that the relation the graph
depicts is not transitive. Yes, the fact that we would need the (e, a) edge
to accompany the edges (e, h) and (h, a) is fairly clear. But how clear is
it that we also need (h, h) and (e, e)? Sure, we could sit down and work
through all of the pairs of edges, but that’s no different than working
through all of the pairs of ordered pairs; remember, the edges are just
representations of the ordered pairs.

The take–away message: The systematic approach is still the approach to
take to verify that a relation is or is not transitive. Well . . . unless there’s
another relation representation that is more helpful?

8.5 Matrix Representations of Relations
We’ve just seen (last section!) that digraph representations of graphs are
a nice way to visualize all of our four graph properties except transitivity.
Two–dimensional matrices (Chapter 7) are another useful representation for

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

8.5. MATRIX REPRESENTATIONS OF RELATIONS 263

relations, with a couple of new benefits. One, nearly all programming lan-
guages have matrix operation libraries available. This means that, if we can
figure out how to identify relation properties within a matrix representation,
we can have a computer do the dirty work of property–checking for us. Two,
we can detect transitivity within matrices using matrix multiplication. True,
multiplying matrices is a pain — but not if we politely ask a computer to do
it for us!

There is a small catch: While we can use matrices to represent any binary
relation, matrix representations are most useful for ‘on’ relations. Happily,
our four relation properties require ‘on’ relations.

8.5.1 Representing Binary Relations Using Two–Dimensional
Matrices

Old news: Binary relations are sets of ordered pairs. The first element of each
ordered pair is found in the ‘from’ base set, while the second element is found
in the ‘to’ base set. To create a corresponding 2–D matrix, we line up all of
the elements of the ‘from’ set, and use them to label the rows of the matrix.
Separately, we do the same with the elements of the ‘to’ set, and use them to
label the columns.

The content of the matrix M representing the relation R consists of the
values 0 and 1. Element mrc is set to 1 if and only if (r, c) ∈ R, and element
mrc is set to 0 if and only if (r, c) 6∈ R.

Example 180:

Consider again Example 163, which presented a ‘from–to’ relation exam-
ple of letters and two sound types (consonants and vowels). The ‘from’
base set was {A,B,C,D,E}, the ‘to’ base set was {consonant,vowel}, and
the relation was S = {(A,vowel),(B,consonant),(C,consonant),(D,consonant),
(E,vowel)}. Using those orderings of the elements in the ‘from’ and ‘to’
sets, our matrix representation’s content is:

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

264 CHAPTER 8. RELATIONS

M =

consonant vowel

A 0 1
B 1 0
C 1 0
D 1 0
E 0 1

The matrix representation of S is quite useful. Of course, we can
easily see that, for example, (A,vowel) ∈ S and that (A,consonant) is
not, but we can do more. If we add up the numbers in each row, we
learn that all of the sums are one, meaning that all of the letters must
be vowels or consonants, but not both. The sums of the columns tell us
that there are three consonants and two vowels.

Relation S in Example 180 uses different base sets for its domain and
codomain, making it what we’ve been calling a ‘from–to’ relation rather than
an ‘on’ relation. Our relation properties (reflexivity, etc.) can be used only
with ‘on’ relations. One implication of this restriction is that our matrices will
be square. Another is that we will label our rows and columns with the same
set of values. We need to follow an important rule when doing that labeling:
List the values in the same order for both the row labeling and the column
labeling! You can choose any ordering of the base set values that you like; you
just have to like it enough to use it for both row and column labeling. Use
that ordering left to right on the columns, and top–down on the rows.

8.5.2 Recognizing Reflexivity in Matrices of Relations

A quick review of Definition 58: Relation R on a set A is reflexive if (a, a) ∈
R, ∀ a ∈ A. In order for a matrix representation to be useful in helping us
(or a computer) recognize reflexivity, the collection of ones in the matrix that
represent the (a, a) ordered pairs need to stand out relative to all of the other
ones in the matrix. Happily, they do.

Example 181:

Back in Example 155, we constructed the relation LE = {(4, 4), (4, 5), (4, 6),
(5, 5), (5, 6), (6, 6)} on D = {4, 5, 6}, but haven’t yet used it as an example

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

8.5. MATRIX REPRESENTATIONS OF RELATIONS 265

for any of our relation properties. Time to change that! Is LE reflexive?

Here are two possible matrix representations of LE:

M1 =

4 5 6 4 1 1 1
5 0 1 1
6 0 0 1

M2 =

6 4 5 6 1 0 0
4 1 1 1
5 1 0 1

M1 6= M2 because we used different label orderings for each. But
notice where the (a, a) ordered pairs are found, regardless of the ordering:
Down the main diagonal (upper–left to lower–right) of the matrix. In LE,
all three of the reflexive ordered pairs are present, which is why all three
of the main diagonal elements are ones. These matrices demonstrate
that when the main diagonal of the matrix representation is all ones, the
relation is reflexive.

A small detail of Example 181: The elements not on the main diagonal
are irrelevant as far as reflexivity is concerned.

8.5.3 Recognizing Symmetry in Matrices of Relations

In Chapter 7, we learned the definition of matrix symmetry. Informally: When
we swap the columns and rows of a square matrix, if the original and resulting
matrices are equal, the matrix is symmetric.

Swapping the rows and columns means swapping the row and column
indices of the matrix elements. That is, element mrc in the original matrix
will become element mcr in the new matrix, and vice–versa. Push this fact on
your mental stack; we’ll come back to in very soon.

Back to relations. A relation is symmetric when every ordered pair (s, t)
in the relation is accompanied by its reversed ordered pair (t, s). In matrix
form, elements mst and mts are both one.

Time to pop your stack, put these ideas side–by–side, and ask the big
question: If the matrix representation of a relation is a symmetric matrix,
must that relation be a symmetric relation? Sounds like it’s time for . . . a
proof!13

13We apologize profusely for the number of pages that have passed between proofs. We
will work hard to increase the proof–to–page ratio going forward because . . . OK, so no one
asked for it. But we’ll try anyway.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

266 CHAPTER 8. RELATIONS

Example 182:

Problem: Prove or disprove: If the matrix representation M of relation
R is a symmetric matrix, then R is a symmetric relation.

Solution: Thanks to our definitions of matrix and relation symmetry,
the proof is straight–forward. We need to show the connection between
matrix and relation symmetry.

Proof (Direct): Recall that, by the definition of a symmetric
matrix, all of the mrc – mcr pairs must have matching values.

Assume that M is the matrix representation of a relation R
on a base set S, and assume that M is symmetric. Consider
the elements mst and mts of M , where s, t ∈ S. Because M is
symmetric, mst = mts = 1 or mst = mts = 0. If the former, both
of the ordered pairs (s, t) and (t, s) are elements of R, satisfying
the definition of a symmetric relation. If the latter, neither
ordered pair is in R, vacuously satisfying the definition.

Therefore, if the matrix representation M of relation R is a
symmetric matrix, then R is a symmetric relation.

The converse is also true, making this an “if and only if” theorem.

Because relation symmetry corresponds to matrix symmetry so nicely, all
of our knowledge of symmetry from matrices can be applied to relations to
determine their symmetry, as the next example demonstrates.

Example 183:

Brothers Percival, Quinn, and Reginald are being quiet . . . too quiet for
their mother’s taste.

Mom: “Boys, what are you doing?”
Reggie: “I’m playing Global Thermonuclear War with Percy.”
Percy: “And I’m playing Global Thermonuclear War with Reggie.”

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

8.5. MATRIX REPRESENTATIONS OF RELATIONS 267

Quinn: “I’m reading ‘Slaughterhouse-Five’ again.”
Mom: “What lovely symmetry!”

Is their mother right? Are the boys’ current interactions symmetric?

We can check by (a) inspecting ordered pairs in the interaction relation,
(b) drawing a graph of the relation and looking for the “back and forth”
edges, or (c) creating the relation’s matrix representation and perching
a mirror on the main diagonal. Let’s risk seven years’ bad luck and go
with (c)!

The content of the upper–right corner of the matrix, as shown in the
left picture, matches that of the reflected mirror–universe version, demon-
strating that the interaction relation is symmetric. As usual, Mom’s right.

A thought: Should we have (Quinn,Quinn) in the relation? Probably
not, unless Quinn reads aloud to himself. But, as far as symmetry is con-
cerned, either is fine — remember that in symmetry, the reflexive ordered
pairs don’t matter.

8.5.4 Recognizing Antisymmetry in Matrices of Relations

If you understood how to recognize symmetry in a matrix representation of a
relation, and you haven’t already forgotten what antisymmetry is, you prob-
ably already know how to detect antisymmetry: None of the corresponding
lower–left and upper–right values can match.

Example 184:

Question: Is the ‘PILE’ relation from Example 175 antisymmetric?

Answer: Seems like it ought to be; how can two cubes be above each

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

268 CHAPTER 8. RELATIONS

Figure 8.14: Logically, the mirror universe matrix should have a sinister mus-
tache and goatee. Credit: Star Trek, “Mirror, Mirror,” Season 2, Episode
4.

other? But let’s be sure. The relation in that example was named A, so
let’s call our matrix representation MA:

MA =

E I L P

E 0 0 0 0
I 1 0 1 0
L 1 0 0 0
P 1 1 1 0

We’re going to make you imagine the mirror this time. There are
six corresponding pairs of values above and below the main diagonal to
check, and they are all different. For antisymmetry, this is good; A is
antisymmetric.

8.5.5 Recognizing Transitivity in Matrices of Relations

We promised that representing relations with matrices would solve our transi-
tivity recognition problem, and it will . . . if you’re a computer, or can somehow
multiply two matrices rapidly in your head. No matter who or what does the

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

8.5. MATRIX REPRESENTATIONS OF RELATIONS 269

math, you should understand why matrix multiplication can be used to check
for transitivity in a relation.

Before we get to ‘why it works,’ let’s cover the ‘how to do it:’ Start by
creating a matrix representation MR of the relation R. Next, multiply MR by
itself via matrix multiplication. If the same set of elements that were zero in
MR are still zero in M2

R, then R is transitive. Otherwise, R is not transitive.

Example 185:

Question: Is R = {(A,A),(A,B),(B,B),(C,A),(C,C)} a transitive relation?

Answer: R is not transitive. We can verify this using the exhaustive “if
(f, g) and (g, h), then (f, h)” pairs of ordered pairs approach we demon-
strated in Example 175. Specifically, R is not transitive because it con-
tains (C,A) and (A,B), but not (C,B).

Of course, this example exists to show how to get that answer using
MR, which is:

MR =

A B C A 1 1 0
B 0 1 0
C 1 0 1

Note that there are four elements that are zero in MR. Now take a
look at M2

R:

M2
R =

 1 1 0
0 1 0
1 0 1

 ·
 1 1 0

0 1 0
1 0 1

 =

A B C A 1 2 0
B 0 1 0
C 2 1 1

M2
R has only three elements that are zero. The one in red, the one

that is no longer zero, is — you guessed it — (C,B)’s.

But . . . why is the element of the missing ordered pair no longer zero?
And, why only that element? To reach the answers to those questions,
we will ask another question: Why is the ordered pair (C,B) needed to

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

270 CHAPTER 8. RELATIONS

make R transitive? Phrased another way: What is sufficient to make
(C,B) necessary for transitivity?

You might remember that we answered that question just ahead of this
example: Having both (C,A) and (A,B) in R is sufficient to make (C,B)
necessary for transitivity to hold. But other pairs of ordered pairs are
also sufficient: (C,B) and (B,B), as well as (C,C) and (C,B). All three fit
the (f, g)− (g, h) pattern that defines transitivity.

Another question before we can answer the original questions: How does
matrix multiplication ‘find’ those potentially useful pairs of ordered pairs?
Exhaustively! Consider how the ‘1’ at row C and column B came to be.
We evaluated this expression (we’ve dropped the relation label for clar-
ity):

m2
CB

= mCA ·mAB +mCB ·mBB +mCC ·mCB

= 1 · 1 + 0 · 1 + 1 · 0
= 1 + 0 + 0
= 1

(This expression is just the expansion of the general summation that
defines matrix multiplication. If you don’t remember that summation,
hop back to Section 7.3.3 for an explanation.)

There are a couple of things to notice about this expression, within the
context of transitivity. First, the subscripts of the elements in the prod-
ucts in the first line correspond exactly to the collection of sufficient pairs
of ordered pairs that we identified earlier. In effect, the products are test-
ing whether or not the three (f, g)− (g, h) pairs exist in R. If one does,
its product is one; otherwise, it is zero. Second, should more than one
pair of the ordered pairs exist in R, the sum will be greater than one.
This is why we talk about zero and non–zero elements rather than zero
and one. (More on this later!)

With those additional questions answered, we can return to the origi-
nal questions (finally!). We now know why mCB is no longer zero. Only
mCB became non–zero because, of all of the potentially ‘sufficient’ pairs
of ordered pairs in R, only the (C,A) — (A,B) pair of ordered pairs ex-
ists. Each zero in M2

R represents a potentially ‘necessary’ ordered pair

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

8.5. MATRIX REPRESENTATIONS OF RELATIONS 271

that turned out to not be necessary, due to the lack ‘sufficient’ pairs of
ordered pairs in R. The matrix multiplication, simply because of the way
matrix multiplication is defined, conveniently tested all of them for us
and reported the ‘nothing to see here’ results as zeros.

Bonus information: You probably noticed that two values of two appear
in M2

R. You might be wondering if there’s a difference between a value
of one and a value of two. There is! The value represents the number
of ‘sufficients’ that exist in R to make that ordered pair necessary. For
example, consider mAB . There are three possible pairs of ordered pairs
that are sufficient to make (A,B) necessary for transitivity, and R has
two of them: (A,A) — (A,B) and (A,B) — (B,B).

Continuing that thought: MR always consists of just zeros and ones,
meaning that we can view it as a logical (i.e., (0, 1)) matrix. You might
see where this observation is leading, and the answer is: Yes, we can use
logical matrix product in place of matrix multiplication to test for tran-
sitivity. Of course, unlike MR ·MR, the result of MR �MR will contain
only zeros and ones.

Example 186:

We already know that relation A from Example 175 (the ‘PILE’ example)
is transitive. Let’s verify it using a logical matrix product.

From Example 184, we know the content ofMA. We just need to compute
M

[2]
A :

M
[2]
A =

0 0 0 0
1 0 1 0
1 0 0 0
1 1 1 0

�

0 0 0 0
1 0 1 0
1 0 0 0
1 1 1 0

 =

E I L P

E 0 0 0 0
I 1 0 0 0
L 0 0 0 0
P 1 0 1 0

MA has 10 zeros. Those same elements are all still zero in M
[2]
A ,

verifying that A is transitive.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

272 CHAPTER 8. RELATIONS

Do the ‘extra’ zeros in M [2]
A bother you? Don’t let them. M [2]

A is not an
accumulation of values of both MA and MA �MA. Instead, think of it as a
collection of all of the (f, h) pairs produced by the exhaustive (f, g) − (g, h)
testing for transitivity. Some of the ordered pairs in A ((I,L), for instance)
aren’t required to be in A by any (f, g) − (g, h) pairs of ordered pairs, and
so they aren’t represented in M [2]

A . M [2]
A tells us what must be present in A

for it to be transitive, and (I,L) isn’t needed. That’s why extra zeros aren’t a
problem, but missing zeros are.

8.6 Equivalence Relations

Feeling a little burnt out on relation properties? Sorry, but we have a few
more to go. There is a potential bright side to that news: The remaining
properties are (mostly) defined in terms of properties that we already know.
All you need to do is remember which of the old properties are needed by each
of the new ones. More good news: We’ll have a system to help you remember
them!

8.6.1 Motivating Equivalence Relations

Do you know an object–oriented (OO) programming language, such as Java,
C++, or Python? Such languages are used by programmers to create software
systems in which objects encapsulate the data describing, and operations that
manipulate, the concepts upon which such systems are built. For example, if
we wanted to create a program that plays Klondike solitaire, we would likely
represent each of the 52 playing cards with an object, and each of the seven
piles of the tableau with seven additional objects.

To ensure that the human player follows the rules of the game, our program
would need to check that cards are played legally. In Klondike solitaire, when
a black–suited eight is atop a pile, only a red–suited seven can be played upon
it. To perform this check, the program needs to be able to compare two card
objects to verify that the new card is one less than the top card, and that the
colors of the suits are different.

To help programmers test objects against each other, the language Java
allows programmers to mark them as being comparable. In Java 12’s docu-
mentation for comparability14 are these words:

14Specifically, this is in the Java 12 API for the Comparable interface. See: https://
docs.oracle.com/en/java/javase/12/docs/api/java.base/java/lang/Comparable.html

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/lang/Comparable.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/lang/Comparable.html

8.6. EQUIVALENCE RELATIONS 273

Figure 8.15: Gnome AisleRiot’s Klondike Solitaire interface.

For the mathematically inclined,15 the relation that defines the
natural ordering on a given class C is:

{(x, y) such that x.compareTo(y) <= 0}.

The quotient for this total order is:

{(x, y) such that x.compareTo(y) == 0}.

It follows immediately from the contract for compareTo that the
quotient is an equivalence relation on C, and that the natural
ordering is a total order on C.

(In Java, the ‘factories’ that create objects are called classes.) Note that
comparability is defined in terms of relations, and that the concept of a quo-
tient is an example of an equivalence relation. Just another reminder that the
material we’re covering is useful in computer science.

If you’re wondering what quotients and total orders are, keep reading.
Quotients of relations will be explained soon, in Section 8.6.3, while total
orders are the last of our relation properties and will be covered in Section 8.8.

15That’s us! Just by reading this, you are henceforth “mathematically inclined.” Con-
gratulations! Knowledge of the secret handshake will be revealed in due time.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

274 CHAPTER 8. RELATIONS

8.6.2 Equivalence Relations

After all of that setup, the actual definition is likely to be a bit anticlimactic:

Definition 62: Equivalence Relationequivalence relation

A relation E on set A is an equivalence relation if E is reflexive, symmet-
ric, and transitive.

That is the definition, but there is more to the story. Some implications
of that combination of relation properties will be raised by the following ex-
amples. Going into them, you need to know that the first three letters of the
Greek alphabet are alpha (upper case: A, lower case: α), beta (B, β), and
gamma (Γ, γ).

Example 187:

Question: Let S = {(x,y) | x and y are the same letter, regardless of
case} on the set U = {A,B,Γ} (note that U 6= U , the universe). Is S an
equivalence relation?

Answer: Let’s start with a little review. To be an equivalence relation on
U , S must first be . . . ? Right: A relation on U . Represented as a set of
ordered pairs, S = {(A,A),(B,B),(Γ,Γ)}. S is clearly a subset of U × U ,
making it a relation on U .

To be an equivalence relation, S must be reflexive, symmetric, and tran-
sitive. Let’s consider each in turn.

Reflexive: This is very easy to verify. The only three ordered pairs
in S are the three reflexive ordered pairs that S needs to be a reflexive
relation.

Symmetric: Do we have (y, x) ∈ S for each (x, y) ∈ S? We clearly
do, because in all of our ordered pairs, x = y. Or, we can remember that
the reflexive ordered pairs can be ignored for symmetry, leaving us with
no other ordered pairs, making the relation vacuously symmetric.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

8.6. EQUIVALENCE RELATIONS 275

Transitive: The only (f, g)− (g, h) pairs of ordered pairs in S are those
where f = g = h, and so all necessary (f, h) ordered pairs are present, too.

Yes, S is an equivalence relation.

It is not difficult to believe that a relation that only pairs three letters
with themselves is an equivalence relation; A=A, B=B, and Γ = Γ all seem
very equivalent. But what if we add the lower–case letters?

Example 188:

Question: We have S and U as in Example 187, let L = {α, β, γ}, and
change the base relation of S to L∪U . Is S still an equivalence relation?

Answer: First, remember that S is defined to say that letters are the same
regardless of case. With the new, larger base set, the content of S is also
larger: S = {(A,A), (A,α), (α,A), (α, α), (B,B), (B, β), (β,B), (β, β),
(Γ,Γ), (Γ, γ), (γ,Γ), (γ, γ)} S is clearly still a relation on L ∪ U , so let’s
get to the good stuff, starting with the matrix representation of S, MS :

MS =

A α B β Γ γ

A 1 1 0 0 0 0
α 1 1 0 0 0 0
B 0 0 1 1 0 0
β 0 0 1 1 0 0
Γ 0 0 0 0 1 1
γ 0 0 0 0 1 1

Reflexive: The main diagonal of MS contains only ones, showing
that S is reflexive.

Symmetric: Ignoring the reflexive ordered pairs, we only have the or-
dered pairs (A,α), (α,A), (B, β), (β,B), (Γ, γ), and (γ,Γ)} to check. As
every (x, y) has the corresponding (y, x) right next to it, S is easily veri-
fied to be symmetric.

Transitive: There is no joy like the joy of manually computing M2
S

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

276 CHAPTER 8. RELATIONS

on a 6 × 6 matrix. Due to the quantity and location of the zeros in the
matrix, computing M2

S really isn’t very hard. The result:

M2
S =

A α B β Γ γ

A 2 2 0 0 0 0
α 2 2 0 0 0 0
B 0 0 2 2 0 0
β 0 0 2 2 0 0
Γ 0 0 0 0 2 2
γ 0 0 0 0 2 2

All of the zeros of MS are still zeros in M2
S . S is transitive.

Thus, S on L ∪ U is also an equivalence relation.

Are you thinking, “OK, S satisfied the definition, but A and α are not
the same letter! How can S be an equivalence relation when A and α are
not equivalent?” Leave the definition aside for a moment, and think about
how we used set builder notation to describe S: “x and y are the same letter,
regardless of case.” As case doesn’t matter, A and α are equal, according to
the instructions used to create S.

8.6.3 Equivalence Classes

You probably noticed that the non–zero values in the MS matrix of Exam-
ple 188 seem to be in three clusters along the main diagonal. Those clusters
are prominent due to the way the base set values are ordered. Still, the group-
ings suggest that the alphas have a affinity for one another, as do the betas
and the gammas. Those sets of associated elements inspires the concept of an
equivalence class.

Definition 63: Equivalence Classequivalence class

Let E be an equivalence relation on set B, with b ∈ B. b’s equivalence
class, denoted [b], is the set {c | (b, c) ∈ E}, where c ∈ B.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

8.6. EQUIVALENCE RELATIONS 277

In plain(er?) English, the equivalence class of b is the set of all of the
values c that appear on the right of b in ordered pairs of E.

Example 189:

Question: What is [Γ], using the equivalence relation S from Exam-
ple 188?

Answer: Let’s answer this using the set of ordered pairs representation
of S, and then using MS .

There are two ordered pairs in S that have Γ on the left side: (Γ,Γ) and
(Γ, γ). All we have to do to create the equivalence class [Γ] is build a set
consisting of the two right–side values of those ordered pairs. [Γ] = {Γ, γ}.

Equivalence classes are even easier to see within matrix representations,
because all of the ordered pairs that begin with a particular element will
be non–zero values within that element’s row of the matrix. The column
labels of those non–zero values are the elements of the equivalence class
of the row label. In MS of Example 188, there are two non–zero values
in Γ’s row. Their column labels are Γ and γ. It follows that [Γ] = {Γ, γ}.

Remember that only equivalence relations have equivalence classes.
The set of all of an equivalence relation’s equivalence classes is known as

the quotient of the relation’s base set.

Definition 64: Quotient quotient

Again let E be an equivalence relation on set B. B’s quotient with respect
to E, denoted B/E, is the set of all of E’s equivalence classes.

Together, all of the equivalence classes of a relation “divide up” (form a
partition of) the relation’s base set. Looked at this way, the term ‘quotient,’
and its division–like notation, makes some sense.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

278 CHAPTER 8. RELATIONS

Example 190:

There are three equivalence classes of relation S on the base set L∪U in
Example 188: [A] = [α] = {A,α}, [B] = [β] = {B, β}, and [Γ] = [γ] =
{Γ, γ}. The quotient of L ∪ U , (L ∪ U)/S, is {{A,α}, {B, β}, {Γ, γ}}.

8.7 Partial Orders

An activity we hope you experience at least twice a day: Teeth–brushing.
Imagine that you are standing just outside of your bathroom. Your not–too–
old toothbrush and your non–empty tube of toothpaste are both sitting on the
counter. Before brushing can happen, you need to walk into the bathroom,
you must grab hold of the toothbrush, you must grab the toothpaste tube, and
you need to apply a blob of toothpaste to the brush. Here are two sequences
of these actions that can result in your teeth being brushed with toothpaste:16

Sequence #1 Sequence #2

Walk in Walk in
Grab toothbrush Grab toothpaste
Grab toothpaste Apply paste to brush
Apply paste to brush Grab toothbrush
Brush teeth Brush teeth

Some of these actions need to be performed in a specific order (for example,
grabbing the toothpaste before applying it to the brush), while others can be
performed in either order (such as, we can grab either the brush or the tube
first) and our goal of clean(er) teeth can be achieved.

Figure 8.16 shows the immediate ordering relationships between the five
actions, as a digraph. Note that, although entering the bathroom (“Walk In”)
is ordered before “Brush Teeth,” there is no edge directly connecting them.
This is because the ordering is transitively implied by the edges that already
exist. However, there are no edges, direct or implied, between the actions
of grabbing the toothpaste tube and grabbing the toothbrush. Thus, some
pairs of actions are ordered and some are not. Such a relation is known as a
partially ordered relation, or, more compactly, a partial order.

16Yeah, Sequence #2 assumes that your toothbrush is pretty stable on the countertop.
Imagine you can afford nice, heavy, solid gold toothbrush handles . . .

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

8.7. PARTIAL ORDERS 279

Walk In

Grab Toothbrush

Grab Toothpaste Apply Paste to Brush

Brush Teeth

Figure 8.16: Orderings of the Teeth–brushing Actions

Just as we have two types of disjunction, we have two kinds of partial
order. We’ll define both because both are useful, but we’ll do so one at a
time.

8.7.1 Reflexive Partial Orders

The name “reflexive partial order” is a big clue as to one of the three relation
properties that combine to define it. We dropped another clue above, when
we commented on transitivity implying unshown edges in Figure 8.16. That
leaves one relation property, which is antisymmetry. That’s right: The only
difference between an equivalence relation and a reflexive partial order is the
“anti” in front of “symmetric.”

Definition 65: Reflexive Partial Order reflexive partial order

A relation R on set P is a reflexive partial order if R is reflexive, anti-
symmetric, and transitive.

An alternate name for this kind of partial order is “weak partial order.” A
third is “non–strict partial order,” which hints at the name of our yet–to–come
second partial order variety.

Our first reflexive/weak/non-strict partial order example is the classic:
Less than or equal to.

Example 191:

Question: Let L = {(i, j) | i ≤ j} on the set P = {11, 13, 17, 19}. Is L a
reflexive partial order?

Answer: To be a reflexive partial order, L must be reflexive, antisym-

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

280 CHAPTER 8. RELATIONS

metric, and transitive.

Reflexive: As any integer is ≤ itself, L will contain (11,11), (13,13),
etc., and is therefore reflexive.

Antisymmetric: Quick review: To be antisymmetric, a relation that
contains (p, q) cannot also contain (q, p) when p 6= q. L has several
such ordered pairs, including (11,13) and (13,17). But, the reversed pairs
(13,11) and (17,13) cannot be in L because 13 6≤ 11 and 17 6≤ 13. The
same is true of all other such pairs of elements of P , telling us that L is
antisymmetric.

Transitive: Let’s be exhaustive this time, but not too exhaustive. We’ll
make our lives easier by ignoring the (p, p) ordered pairs, as Example 176
taught us we can do. That leaves us with just four (f, g) − (g, h) pairs
of ordered pairs to check. As all needed (f, h) pairs are present, L is
transitive:

(f, g) (g, h) (f, h) Present?
(11,13) (13,17) (11,17) Yes!
(11,13) (13,19) (11,19) "17

(11,17) (17,19) (11,19) "
(13,17) (17,19) (13,19) "

Yes, L is a reflexive partial order.

A question before we leave this example: Is L also an equivalence rela-
tion? To check L for equivalence, we only need to consider symmetry, as
we’ve already verified that L is reflexive and transitive. L is not symmet-
ric, because, for example, we have (11, 13) ∈ L but not (13, 11). So, no,
L is not also an equivalence relation.

Poset18 is a term associated with partial orders. It is an abbreviation of
17This is a ditto mark, and indicates that the text on the previous line is repeated on this

line. Ditto is also the name of a Pokémon and of one of the twins (repeated . . . get it?) in
the long–running “Hi and Lois” newspaper comic strip.

18To us, this sounds like the name of some near–future, gotta–have child’s toy, like a
Furby or a Tickle Me Elmo. “Mom! Dad! Get your kids a Poset this holiday season!
It’s adorable and relational!” (Fine print: Posets are both flammable and inflammable. Earplugs

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

8.7. PARTIAL ORDERS 281

the phrase “partially ordered set,” and is the name of the base set of a reflexive
partial order.

Definition 66: Poset poset

A poset (partially ordered set) is the base set B of a reflexively partially
ordered relation R, and is denoted by the ordered pair (B,R).

Example 192:

Question: Does relation L from Example 191 have a poset? If so, what
is it?

Answer: That example showed that L is a reflexive partial order, which
means that L does have a poset, and that poset is its base set, P .

Beyond the notation given in the poset definition, there’s a bit more poset
notation that you should understand, and learning it soon after a less–than–
or–equal–to example is the best time.

Say that R is a reflexively partially ordered relation on B, with x, y ∈ B
and (x, y) ∈ R. When discussing reflexive partial orders, instead of writing
“(x, y) ∈ R,” people will shorten it to “x � y” (LATEX: \preceq). Notice that
the symbol ‘�’ is very similar to the more common ‘≤’ symbol, but with more
artistic flair. And, because ‘�’ represents the recursively partially ordered
relation, people will often use the symbol ‘�’ to also be the relation’s name,
instead of using a letter, making the poset notation (B,�).

Still with us? We hope so, but there’s more to the story. Instead of
tracking down the correct symbol, people will just use ‘≤’ instead, resulting
in the notation (B,≤) and leading people new to posets into thinking that
posets are only for less–than–or–equal–to relations. Which raises a question:
Why not pick a totally new symbol instead of one that looks like ‘≤’? The
reason is that partial orders based on ‘≤’ are the classic examples, which,
unfortunately, caused ‘≤’ to be adopted as the symbol for all reflexive partial

recommended. Requires 13 AAAAA batteries, not included nor available in stores. Manufacturer not
responsible for abuse of the good/evil switch.)

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

282 CHAPTER 8. RELATIONS

orders, whether or not they are based on that operator. People who use ‘�’
are both sticking with tradition while trying to be (slightly) distinct from ‘≤’.

In summary: When you see the notation (B,�) or (B,≤), you are being
told that B is a poset on a reflexive partial order named ‘�’ or ‘≤’, and
should be aware that the partial order may or may not involve the less–than–
or–equal–to operator.

Example 193:

Question: We began this section with two sequences of teeth–brushing
operations. Is that example a reflexive partial order?

Answer: Figure 8.16 showed a graph representation of that example’s re-
lation. As a set of ordered pairs, it’s T = {(Walk In, Grab Toothbrush),
(Walk In, Grab Toothpaste), (Grab Toothpaste, Apply Paste to Brush),
(Grab Toothbrush, Brush Teeth), (Apply Paste to Brush, Brush Teeth)}.

As the discussion with the figure made clear, the graph, and thus the
relation T , does not include all of the edges necessary for T to be transi-
tive. This means that T cannot be a reflexive partial order.

Even if we added all of the needed ordered pairs to achieve transitiv-
ity, T still wouldn’t be reflexive, and so still would not be a reflexive
partial order.

A follow–up question: Is the base set of T a poset? No. Remember that
the ‘po’ stands for ‘partially ordered.’ For a base set to be a poset, it
must be associated with a reflexive partial order, which T is not. The
same base set could be a poset for a different relation, but not for T .

8.7.2 Irreflexive Partial Orders

If you hear a mathematician say that something is a “partial order,” odds
are that they mean it’s a reflexive partial order. However, the teeth–brushing
example (with the additional ordered pairs for transitivity) certainly feels as
though we could call it a partial order. Insisting on reflexivity works fine for
situations such as less–than–or–equal–to, but excludes other relations that we
might practically know to be ‘partial orders,’ too.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

8.7. PARTIAL ORDERS 283

This is why we also have irreflexive partial orders. Because we only use
the concept of irreflexivity for this one kind of partial order, we didn’t include
the term alongside reflexivity, symmetry, and the rest. But, as we can’t define
irreflexive partial order without it, . . .

Definition 67: Irreflexivity irreflexivity

A relation E on set B is irreflexive iff no element of B is related to itself
in E.

Irreflexivity is at the opposite extreme of reflexivity: To be reflexive, a
relation must have all (a, a) ordered pairs; to be irreflexive, a relation must
have no (a, a) ordered pairs.

The parallels between reflexivity/irreflexivity and symmetry/antisymmetry
are strong. Just as it is possible for a relation to be both symmetric and an-
tisymmetric, it’s possible for a relation to be both reflexive and irreflexive.
Similarly, just as there are many relations that are neither symmetric nor
antisymmetric, there are also many relations that are neither reflexive nor ir-
reflexive. Finally, just as “antisymmetric” is not the same as “not symmetric,”
“irreflexive” is not the same as “not reflexive.”

Now that that’s out of the way, we can return to partial orders.

Definition 68: Irreflexive Partial Order irreflexive partial order

A relation I on set B is an irreflexive partial order if it is irreflexive,
antisymmetric, and transitive.

Just as we only added the prefix “anti” to the definition of equivalence
relation to create the definition of reflexive partial order, we only added the
prefix “ir” to the definition of reflexive partial order to get that of irreflexive
partial order.

An alternate name for “irreflexive partial order” is “strict partial order.”
Many people prefer “weak” and “strict” to the longer “reflexive” and “ir-
reflexive,” but we like the full names because they perfectly describe the only
difference between the two concepts.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

284 CHAPTER 8. RELATIONS

Example 194:

Question: Is the teeth–brushing example’s relation an irreflexive partial
order?

Answer: No, at least not in its original form. Remember, relation T
from Example 193 is not transitive.

This time, let’s actually add the additional ordered pairs to T that the
graph of Figure 8.16 did not include. We’ll call the augmented relation
T ′ (read: T–prime), and will abbreviate the action names to make the
length more manageable.

The abbreviated original ordered pairs of T are (WI,GTB), (WI,GTP),
(GTP,APB), (GTB,BT), and (APB,BT). Transitivity requires the addi-
tions of (WI,APB), (GTP,BT), and (WI,BT).19 Combined, we have T ′ =
{(WI,GTB), (WI,GTP), (GTP,APB), (GTB,BT), (APB,BT), (WI,APB),
(GTP,BT), (WI,BT)}. For practice, feel free to verify the transitivity of
T ′ yourself.

Having achieved transitivity, we need to check irreflexivity and antisym-
metry, too. T ′ is irreflexive, because it contains no (a, a) pairs. T ′ is also
antisymmetric because no (d, e)− (e, d) pairs of ordered pairs exist. T ′ is
therefore an irreflexive partial order.

8.7.3 Remembering the Definitions of Equivalence Relation,
Reflexive Partial Order, and Irreflexive Partial Order

We promised to present a way for you to easily remember the definitions
of equivalence relation and of the two partial orders. We aim to keep our
promises!

First, all three definitions are built of three concepts. Second, all three
include transitivity. Third, in the order in which we presented them, each
definition is a slightly different version of the previous definition. If you can
remember the equivalence relation definition and the two adjustments, you’ll
be able to reconstruct the partial order definitions when you need them.

19Bonus knowledge! Because T ′ is the smallest transitive relation such that T ⊆ T ′, T ′

is known as the transitive closuretransitive closure of T .

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

8.7. PARTIAL ORDERS 285

Figure 8.17: Where’s Anti Ir? Well, she was . . . um . . . indisposed.22 Credit:
Metro–Goldwyn–Mayer, “Wizard of Oz.”

The equivalence relation definition can be remembered for consisting of
only the three ‘positive’ relation properties: Reflexivity, Symmetry, and Tran-
sitivity. (We think of them as being ‘positive’ because their names do not
include any of the English ‘not’ prefixes.)

Now for the two adjustments. You’ve probably seen the movie “The Wiz-
ard of Oz,” or perhaps read the original book, “The Wonderful Wizard of Oz.”
The last line of the movie is spoken by Dorothy: “Oh, Auntie Em, there’s no
place like home!” Imagine that Auntie Em has a sister, Irma. It almost goes
without saying that Dorothy would call her . . . Anti Ir.20 Those are the two
‘negative’ prefixes that we need to add, one at a time, in that order, to the
equivalence order definition to create the two partial order definitions. You
need to remember to which property names to add which prefixes, but that’s
not hard, either; ‘antireflexive’ and ‘irsymmetric’ just sound weird.21

20We don’t care how loudly this made you groan; we refuse to apologize for it. Also,
although you might expect Anti Ir to be very, very evil because her name is two negatives,
the two cancel out, and so Dorothy loves her just as much as Auntie Em. Isn’t that sweet?

21We hate to have to mention this, but . . . ‘anti–reflexive’ is actually used an alternate
name for irreflexivity by some people. On the bright side, ‘irsymmetric’ doesn’t seem to
have a meaning . . . so far.

22You know, like Chekov was during the entire “Space Seed” episode of “Star Trek.” Also,
color was illegal in Kansas until 1967.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

286 CHAPTER 8. RELATIONS

8.8 Total Orders
Remember the mention of the phrase ‘total order’ back in Section 8.6.1? It
was in the quote from Java’s documentation of the Comparable interface,
alongside ‘equivalence relation.’ Sounds like they might be connected, doesn’t
it? They are, though not directly, at least as viewed through their definitions.

Just based on their names, you might assume that a partial order is an
incomplete total order. That is, maybe you get a partial order when you
start arranging something but get bored and don’t complete the job, while a
total order is what you’d have produced if you’d finished what you’d started.
Actually, that’s not too far off!

Before we can define what a total order is, we need to define a familiar
term.

Definition 69: Comparablecomparable

Let R be a reflexive partial order on the set W , and let w, x ∈W . w and
x are comparable when either w � x or x � w.

Note that the definition doesn’t need to include “. . . but not both” in its
wording, because reflexive partial orders are, by definition, antisymmetric.

Example 195:

Question: Let D = {(x, y) | x divides y}, where x, y ∈ {1, 2}. Are 1 and
2 comparable, in D?

Answer: To answer this question properly, we need to remember that
comparability depends on the relation being a reflexive partial order.
Let’s begin there: Is D a reflexive partial order?

For convenience, let’s showD as a set of ordered pairs: D = {(1, 1), (1, 2),
(2, 2)}. To be a reflexive partial order, a relation must be reflexive, an-
tisymmetric, and transitive. D is reflexive (it contains (1, 1) and (2, 2)),
antisymmetric (it has (1, 2) but not (2, 1)), and transitive ((1, 1)−(1, 2) ;
(1, 2) and (1, 2)− (2, 2) ; (1, 2)), making it a reflexive partial order.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

8.8. TOTAL ORDERS 287

Now we can worry about 1 and 2. For these values to be comparable, D
must contain exactly one of (1, 2) or (2, 1). It contains just the former,
so, yes, 1 and 2 are comparable in D.

With comparability explained, we can define total order.

Definition 70: Total Order total order

Let T be a reflexive partial order on the set S, and let r, s ∈ S. T is
a total order when each pair of elements r and s are comparable. (Or,
T is a total order when it is antisymmetric, transitive, and each pair of
elements r and s are comparable.)

Note that the definition is really two versions. Either is correct. The first
version is just one step beyond a reflexive partial order, making it handy if you
already know that about the relation. The second version follows the same
three–property pattern as the partial order definitions. The reason that the
second version doesn’t include reflexivity is that comparability requires that
all of the reflexive ordered pairs be present.

Example 196:

Question: In Example 191, we demonstrated that the relation L =
{(i, j) | i ≤ j} on the set P = {11, 13, 17, 19} is a reflexive partial or-
der. Is L also a total order?

Answer: Because we already know L to be a reflexive partial order, all
that we need to demonstrate is that all pairs of elements in P are com-
parable in L. Let’s consider 17 as an example. The four ordered pairs in
L that include 17 are (11,17), (13,17), (17,17), and (17,19), demonstrat-
ing that all elements of P are comparable with 17 (including 17 itself).
Because we can also identify the corresponding ordered pairs for all three
of the other elements of P , L is a total order.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

288 CHAPTER 8. RELATIONS

Figure 8.18: A graph of Rock–Paper–Scissors–Lizard–Spock. Clockwise from
the top: Scissors, paper, rock, lizard, Spock. Credit: Wikimedia Commons.

Example 197:

The hand game Rock–Paper–Scissors (a.k.a. Roshambo) is a popular way
to resolve a dispute with another person. It has variants that date back
centuries. Each person simultaneously uses one of their hands to make
one of those three shapes. If the first person makes a rock and the second
scissors, the first person wins, because rock crushes scissors. Similarly,
scissors cut paper, and paper covers rock. If both people make the same
shape, they try again until one wins.

A popular modern extension is Rock–Paper–Scissors–Lizard–Spock, cre-
ated by Sam Kass and Karen Bryla. Figure 8.18 shows a graph of the
game’s “who defeats whom” relation. As described by Kass: “Scissors
cuts Paper covers Rock crushes Lizard poisons Spock smashes Scissors
decapitates Lizard eats Paper disproves Spock vaporizes Rock crushes
Scissors.”23 What Kass (and every graph we’ve ever seen of this ver-
sion) didn’t bother to include are the ties (e.g., rock ties rock), which
can certainly occur. In ordered pairs notation, including the ties, the
game’s relation is: R = {(scissors, paper), (paper, rock), (rock, lizard),
(lizard, spock), (spock, scissors), (scissors, lizard), (lizard, paper), (pa-

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

8.8. TOTAL ORDERS 289

per, spock), (spock, rock), (rock, scissors), (rock, rock), (paper, paper),
(scissors, scissors), (lizard, lizard), (spock, spock)} on the set B = {rock,
paper, scissors, lizard, spock}.

Question: Is R a total order?

Answer: To show that the answer is ‘yes’ (which it seems it must be
for the game to work), let’s use the second version of the total order def-
inition this time. We have three tasks: Show antisymmetry, transitivity,
and, finally, comparability of every pair of elements a and b of B within
R, as (a, b) or (b, a).

Task #1: Is R antisymmetric? This takes a bit of work, but with a
little patience we can verify that no non–reflexive (a, b) pair in R has
a (b, a) pair. (If one did, we couldn’t determine who wins.) Yes, R is
antisymmetric.

Task #2 is our old nemesis, transitivity, which . . . trips us up! Here’s
an example to demonstrate: R contains (rock, scissors) and (scissors, pa-
per). To be transitive, R must also contain (rock, paper), but it doesn’t.
Because R is not transitive, the answer to the question is ‘no:’ R is not
a total order.

Does this result bother you? Are you concerned that the game is bro-
ken because its relation isn’t totally ordered? Don’t let it worry you.
The game needs antisymmetry and comparability to work, but it doesn’t
need transitivity, because the game doesn’t need (f, g)− (g, h) sequences
of ordered pairs. (If you examine R, you’ll find that B meets the “w � x
or x � w” requirement, meaning that the game meets the comparability
requirement.) You can think of the game’s components as being ordered
enough for its needs, but not totally ordered. For the same reason, the
original Rock–Paper–Scissors isn’t based on a total ordering, either.

23Source: http://www.samkass.com/theories/RPSSL.html

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

http://www.samkass.com/theories/RPSSL.html

Appendix A

Math Review

This book does not expect that the reader has any more mathematical back-
ground than college algebra. That is, you should already be comfortable with
algebraic expressions, polynomials, exponents and logarithms, functions, etc.
For some of you, much time has passed since you learned this material. To
ensure that you can handle discrete structures, reading this appendix is rec-
ommended. Note that some college algebra topics are covered in the main
body of this book; that is, you won’t find all of them here.

A.1 Fractions
Fractions do not appear often in discrete structures, but often enough that
reviewing – and practicing – the basics is a good idea. Students lose many
points by performing manual manipulations of fractions carelessly.

Definition 71: Common Fraction common fraction

A common fraction1 is the quotient of two integers x (the numerator)
and y (the denominator), written x/y or x

y , where the denominator is
not zero.
(LATEX: \frac{x}{y} produces x

y .)

In the form x/y, the / is commonly known as a forward slash, but may also
be known as a solidus, virgule, or even separatrix,2 depending on the context

1Common fractions are also known as vulgar fractions. No kidding!
2Still not kidding. Who says appendices have to be boring?

291

292 APPENDIX A. MATH REVIEW

in which it is used. The little horizontal line in x
y is a vinculum.3

Table 21: Common Fraction Equalities
x
z + y

z = x+y
z

x
z −

y
z = x−y

z

(xz)(yz) = xy
z2

x
z
y
z

=
[
(xz)(zy) =

]
x
y

(a) Equal Denominators

x
w + y

z = xz+wy
wz

x
w −

y
z = xz−wy

wz

(xw)(yz) = xy
wz

x
w
y
z

= xz
wy

(b) Unequal Denominators

Table 21 shows the basics of fraction addition, subtraction, multiplication,
and division.

Example 198 demonstrates several fraction operations, including removing
common factors to reduce the result to lowest terms.

Example 198:

Problem: Evaluate
1
6 + 3

8
5

12
− 4

5 and, if necessary, reduce the result.

Solution:
1
6 + 3

8
5

12
− 4

5 =
8

48 + 18
48

5
12
− 4

5 =
26
48
5

12
− 4

5 =
26
48
20
48
− 4

5 = (26
48)(48

20)− 4
5

= 26
20 −

4
5 = 26

20 −
16
20 = 10

20 = 1
2

A.2 Rational Numbers

Fractions consisting of integers lead us directly to numbers that either can, or
cannot, be expressed as common fractions.

3‘Vinculum’ was also used as the name of a processing unit in a Borg vessel in Star Trek:
Voyager.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

A.2. RATIONAL NUMBERS 293

Definition 72: Rational Number rational number

A value that can be expressed as the ratio of two integers is a rational
number.

Notice that the word “ratio” appears in both the definition and within the
word “rational.” This makes the definition easy to remember.

How can we determine whether or not decimal values, such as 3.375, are
rational? If the fractional part (the part to the right of the decimal point) is a
terminating sequence of digits (that is, if the fractional part does not continue
indefinitely), then the entire value can be expressed as a fraction.

Example 199:

Problem: Demonstrate that the decimal value 3.375 can be expressed as
a rational number.

Solution: 3.375 is a representation of the sum of two fractions: 3
1 and

375
1000 .

3
1 + 375

1000 = 3000
1000 + 375

1000 = 3375
1000 . Thus, 3.375 is a rational number,

because we can express it exactly by the (unreduced) fraction 3375
1000 .

Decimal values with repeating fractional parts (such as 17.4444 . . . or
0.87262626 . . .)4 are also rational numbers, as Example 200 illustrates.

Example 200:

Problem: Demonstrate that 0.87262626 . . . can be represented as the ra-
tio of two integers.

Solution: Let x = 0.87262626 We can multiply both sides by 100,
which leaves the fractional part consisting of only the repeating dig-
its (100x = 87.262626 . . .). Multiplying by 10, 000 leaves the fractional
part with the same repeating pattern: 10000x = 8726.262626 In
both cases, the fractional part is representing the same value. By sub-

4To highlight the repeating portions of such numbers, mathematicians use an overbar
(LATEX: \overline{}) to indicate the repeating part. For example, 0.87262626 . . . can be
represented as 0.8726. This ‘overbar’ can also be called a vinculum.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

294 APPENDIX A. MATH REVIEW

tracting the left and right sides of the 100x equality from those of the
10000x equality, we learn that 9900x = 8639, or x = 8639

9900 . That is,
0.87262626 . . . = 8639

9900 .

You may be surprised to read that 3.375 (and any so-called ‘terminating’
decimal value) is actually a repeating decimal! This is correct because we can
append infinitely many zeros to it (3.37500000 . . .) without changing its value;
thus, it is technically a repeating decimal. As a practical matter, writing such
values with “000. . . ” at the end is unnecessary if we accept that, notationally,
3.375 represents 3.375000

What about values that cannot be expressed as the ratio of two inte-
gers? They are called irrationalirrational numbers. Examples include the values π
(3.1415926 . . .), e (2.71828 . . .), and

√
2 (1.4142 . . .). If a decimal value’s frac-

tional part is terminating or repeating, the value is rational. Otherwise, the
value is irrational.

A.3 Set Basics
Set notation and set operators are used throughout discrete structures. Stu-
dents frequently know the basics before studying discrete structures, which is
why we cover them in this appendix. More advanced set topics are covered in
the main part of this book.

Definition 73: Setset

A set is an unordered collection of unique objects.

We show the elements of a set by listing them, comma-separated, inside
of ‘curly brackets’ (LATEX: \{ and \}), a.k.a. ‘braces.’5 We’ll use upper-case
letters to label sets for later reference.

Example 201:

A rainbow’s colors are red, orange, yellow, green, blue, indigo, and vio-
let.6 The set of a rainbow’s colors can be written as:

5If you can get over the association with the appliances of teenage dental torture.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

A.3. SET BASICS 295

R = {red, orange, yellow, green,blue, indigo, violet}.

Because order doesn’t matter to sets, there are 7 ! = 5, 040 acceptable
ways to list the elements of set R.

As the definition says, the elements of a set must be unique. That is, an
element may appear in a specific set at most once.

Example 202:

The set of letters in the word ‘letter’: S = {l, e, t, r}

Note that, if you need to have a set that allows duplicates, the concept
has already been invented. Such sets are known as multisets or bags. multiset, bag

A.3.1 Set Notation

Much notation is associated with sets. Here are the basics:

• To indicate that an element is a member of a set, use ∈ (LATEX: \in). Re-
ferring to Example 202, e ∈ S. To negate this, use 6∈ (LATEX: \not\in),
as in f 6∈ S.

• A set with no members, known as the empty set, empty setis represented by a
set of curly brackets with nothing in-between ({ }) or by the symbols ∅
(LATEX: \emptyset) or ∅ (LATEX: amssymb’s \varnothing).7

• The elements of some sets are difficult (sometimes impossible!) to enu-
merate. To define such sets, we use set builder notation. set builderThe format:
{variable(s) | description of set membership}. (LATEX: \mid produces
the vertical line.)

• The entire collection of set elements available in a given situation is
known as the universal set universal set, which we will represent with the symbol U
(LATEX: \mathcal{U}).

6The first letters of which, in order, form a name famous to schoolchildren if not to
history: Roy G. Biv. But we’re talking sets here, not sequences!

7amssymb is an optional package for LATEX that supplies additional math symbols

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

296 APPENDIX A. MATH REVIEW

Example 203:

e ∈ S Show that e is a member of set S
f 6∈ S Show that f is not an element of S
{ t | t is a positive multiple of 3} {3, 6, 9, 12, . . .}
{ α | α is a UNICODE symbol} There are 110,181 in UNICODE 6.1!
U = {0, 1, 2, 3} All possible Base 4 digits

A.3.2 Fundamental Set Operators

We will cover four set operators here. Others will introduced in the body of
this book as they are needed.

• Union (∪, LATEX: \cup): A binary operator that combines the elements
from the two operand sets into a single result set. If an element appears
in both operand sets, it will appear only once in the result set.

• Intersection (∩, LATEX : \cap): Like union, intersection is a binary
operator. Unlike union, the result set contains the elements that the
operand sets have in common.

• Difference (−, LATEX : -): In S − T, the result set contains those
elements of S that are not also in T. Alternatively, think of the result set
temporarily containing all elements of S. Remove from the result set all
items also found in the set S∩T . The remaining elements comprise S−T.
Some people use the term relative complementrelative complement instead of difference, and
use \ (LATEX: \backslash) instead of − as the symbol.

• Complement (set, LATEX : \overline{set}): In a given setting, we
know that the elements of a set are limited by the universal set. The
complement of a set S, S, is the set of all elements of the universal set
that are not members of S. That is, S = U − S.

• Cardinality (| set |, LATEX: $\mid set \mid$): The cardinality of a set
is the quantity of items in the set.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

A.3. SET BASICS 297

Example 204:

Let U = {0, 1, 3, 4, 5, 7, 8, 9},D = {1, 3, 5, 7, 9},E = {4, 8}, and F =
{1, 4, 7, 9}.

(a) E ∪ F = {1, 4, 7, 8, 9}
(b) D ∩ F = {1, 7, 9}
(c) F = {0, 3, 5, 8}
(d) ∅ = U
(e) F ∩D = {4}

(f) F−D = {4}
(g) E−D = {4, 8} (= E)
(h) E− E = ∅
(i) | E | = 2
(j) | E− E | = 0

The fact that F−D = F ∩D in Example 204 is not merely a coincidence,
it is also true for all pairs of sets from the same universal set. That is, for any
sets A and B whose elements are drawn from the same set U , A−B = A∩B.
Operators, such as set difference and complement, that can be defined in terms
of primitive operators are sometimes called derived operators. derived operator

Set operators are subject to rules of precedence precedenceand associativity as are
any other operators. associativityYou are likely familiar with these concepts from the
programming language(s) you know. For example, in Java multiplication has
precdence over addition, telling us that, after the evaluation of the statement
a = 4 + 5 * 6;, a receives the value 34 instead of 54. While you can find
precedence and associativity suggestions for set operators, no canonical rules
exist.8 Rather than adding to the confusion, we will simply use parentheses
when necessary to order the operators in our set expressions.

A.3.3 Set Visualization with Venn Diagrams

To make the set operators easier to understand, Venn Diagrams venn diagramare often used.
As Figure A.1 suggests, they are found on the internet nearly as frequently as
they are in discrete structures books.

The enclosing rectangle represents the universal set. Frequently, the label
U is placed in the upper-right corner as a reminder. Each set of interest within
the universe is represented with a labeled circle or other (usually curved)
‘blob.’ These circles are positioned to overlap in a way that produces a region
for every possible relationship between the sets. Figure A.2 shows common
Venn diagram representations for two, three, and four sets.

8Some applications avoid the issue entirely. The database language SQL handles prece-
dence by considering all set operators to have the same precedence.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

298 APPENDIX A. MATH REVIEW

Figure A.1: Geeks and Nerds Venn Diagram (http://xkcd.com/747/).
Credit: Randall Munroe, xkcd.com.

A B

U
A B

C

U

A

B C

D

U

Figure A.2: Standard 2-set, 3-set, and 4-set Venn Diagrams

By shading or otherwise highlighting the appropriate regions, visualiza-
tions of the results of set operations can be created. Figure A.3 shows Venn
diagram representations of the results of some of the expressions in Example
204. While the diagrams with the bold colors are eye-catching, the versions
with the cross-hatching are easier to create by hand by students taking timed
quizzes or exams.

A.3.4 Notations for Sets of Numbers

A reasonably well-accepted collection of labels exist that mathematicians use
to represent collections of numbers. Here are the labels used in this book:

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

http://xkcd.com/747/
xkcd.com

A.3. SET BASICS 299

(a) (b) (c) (f)

Figure A.3: Venn diagrams of (a) E ∪ F, (b) D ∩ F, (c) F, and (f) F − D.
Labels correspond to those of Example 204.

Table 22: Sets of Numbers

Symbol Name Set Representation
Z All Integers {. . . ,−2,−1, 0, 1, 2, . . .}

Z+,N+ Positive Integers {1, 2, 3, . . .}
Z∗,N0 Non-negative Integers {0, 1, 2, 3, . . .}
Z− Negative Integers {. . . ,−3,−2,−1}
Zeven Even Integers {. . . ,−4,−2, 0, 2, 4, . . .}
Zodd Odd Integers {. . . ,−3,−1, 1, 3, . . .}
Q Rational Numbers {ab | a, b ∈ Z and b 6= 0}
Q Irrational Numbers {i | i 6∈ Q and i 6∈ Imaginary}
R Real Numbers {Q ∪Q}

Some explanations are in order. Z (LATEX: \mathbb{Z}) is used for inte-
gers because the German word for “integers” is “zahlen,” and many influential
mathematicians were German. (That, and several sets of numbers have names
that being with “I” in English, specifically “integer,” “irrational,” and “imag-
inary.”) Zeven and Zodd are non-standard notations, but accepted symbols for
these sets do not exist and Zeven and Zodd have the advantange of being easily
understood. Finally, Q is as accepted a symbol for the irrational numbers as
there is. We have just seen that the overline represents the complement of a
set, thus Q represents “not rational,” or “irrational.”

The relationships between most of these can be shown in a non-too-messy
Venn diagram; see Figure A.4.

You may be wondering about the omission of natural numbers, a set rep-
resented by the symbol N. The problem: What are the natural numbers,
exactly? Most mathematicians now consider zero to be ‘natural,’ but others

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

300 APPENDIX A. MATH REVIEW

Z− Z+ Q
Z∗Z

Q

R

0

Figure A.4: A Visualization of Number Set Relationships

prefer the traditional interpretation, where a symbol isn’t needed until there
is something to count. To avoid confusion, we will ignore N and will use Z∗
when we want natural numbers including zero and Z+ when zero is excluded.

A.4 Associativity, Friends and a Distant Cousin

We know that algebraic expressions consist mostly of operands (values), oper-
ators (unary as well as binary), and grouping symbols (such as parentheses).
Set and logical expressions, both of which are common in discrete structures,
have these components as well.

To correctly evaluate an expression, we need to know the ways in which
its components can be rearranged without changing the eventual evaluation
of the expression. The properties that govern these rearrangements include
associativity, commutativity, and distributivity. We include transitivity in this
section, too, even though it covers a rather different area than do the others.9

A.4.1 Associativity

The associative property covers groupings across binary operators (such as
subtraction in arithmetic and intersection in sets).

Definition 74: Associativityassociativity

Assume that 4 is a binary operator that can be applied to values a,
b, and c. The operator 4 is associative if (a4b)4c = a4(b4c) for all
acceptable values a, b, and c.

9It also ends in “tivity”; for us, that’s reason enough to put it here!

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

A.4. ASSOCIATIVITY, FRIENDS AND A DISTANT COUSIN 301

The symbol4 in Definition 74 (and the geometric shapes used in the upcoming
definitions in this subsection) represents any acceptable binary operator, not a
specific one. More formally, associativity is known as the associative property
and the expression is known as the associative law.

Not all operators are associative, as Example 205 shows.

Example 205:

Addition over integers is an associative binary operator: (9 + 13) + 5 =
9 + (13 + 5)
Union over sets is also associative: G ∪ (H ∪ I) = (G ∪H) ∪ I
Subtraction over integers is not associative: (2− 3)− 4 6= 2− (3− 4).

Be aware that you cannot select just any three values to show that an
operator is associative. Consider (0−0)−0 = 0−(0−0). This is certainly true,
but that relationship is not generally true. Thus, subtraction over integers is
not associative.

A.4.2 Commutativity

Commutativity covers positioning of operands around binary operators.

Definition 75: Commutativity commutativity

Assume that ./ is a binary operator that can be applied to values d and
e. The operator ./ is commutative if d ./ e = e ./ d for all acceptable
values d and e.

Example 206:

Multiplication over integers is commutative: 8 ∗ 5 = 5 ∗ 8
Intersection over sets is, too: J ∩K = K ∩ J
Set difference is not commutative: L−M 6= M− L

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

302 APPENDIX A. MATH REVIEW

A.4.3 Distributivity

Unlike associativity and commutativity, distributivity requires two distinct
operators.

Definition 76: Distributivitydistributivity

Assume that 2 and 3 are binary operators that can be applied to values
x, y, and z. 2 is distributive over 3 if both of these conditions hold:

(a) x2 (y3 z) = (x2 y)3 (x2 z) (2 is left distributive over 3), and
(b) (y3 z)2x = (y2x)3 (z2x) (2 is right distributive over 3),

for all acceptable values x, y and z.

Notice that the difference between (a) and (b) in Definition 76 is due to the
commutativity of the operator represented by 2. So long as 2 is commuta-
tive over the values, there is no behavioral distinction between left and right
distributivity.

Example 207:

With integers, multiplication is distributive over addition, because, for
example, 4 ∗ (7 + 9) = (4 ∗ 7) + (4 ∗ 9) and (7 + 9) ∗ 4 = (7 ∗ 4) + (9 ∗ 4)
(either way, 64 = 64).
However, addition is not distributive over multiplication: 3 + (5 ∗ 6) 6=
(3 + 5) ∗ (3 + 6) (33 6= 72).

A.4.4 Transitivity

As mentioned at the top of this section, transitivity does not fit well with the
other properties. It is still important in discrete structures, and even though
it should be known to you already, to be complete we should mention it in
this appendix somewhere. This section is as good a place as any to cover it.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

A.5. PROPERTIES OF INEQUALITITES 303

Definition 77: Transitivity transitivity

A binary relationship denoted by a relational operator } is transitive if,
whenever a} b and b} c are both true, then a} c is also true.

Binary relational operators relational operatorare those that compare two values. For in-
stance, in mathematics ‘<’ is used to indicate that a number n is less than
another number m, as in n < m. If so, the operator evaluates to true; other-
wise, false. As it happens, ‘<’ is transitive, as demonstrated by Example 208
and detailed later on in Table 25.

Example 208:

(a) −9 < −3 and −3 < 5. By transitivity of <, we know that −9 < 5.

(b) (3 + 5) = 8 and 8 = 23. Because = is transitive, we know that
(3 + 5) = 23.

Example 209:

Consider the game Rock-Paper-Scissors.10 Paper beats rock and rock
beats scissors. If the relationship “beats” were transitive, then paper
would beat scissors, but of course it does not. Thus, the “beats” operator
is not transitive in the context of Rock, Paper, Scissors.

A.5 Properties of Inequalitites
Many people are fuzzy on what an “inequality” is, which makes the concept
a good place to start. An inequality inequalityis a comparison between two values that
can be true when the values are not equal. Thus, the relational operators 6=,
<, and > are all unquestionably inequalities. The operators ≤ and ≥ are also
considered to be inequalities, even though 4 ≤ 4 is true (that is, even though

10See http://en.wikipedia.org/wiki/Rock-paper-scissors for the rules.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

http://en.wikipedia.org/wiki/Rock-paper-scissors

304 APPENDIX A. MATH REVIEW

these operators can also be true in an equality situation, we consider them
to be inequalities because they can be true when the operands differ, as in
4 ≤ 5).

Tables 23, 24, and 25 detail several properties of inequalities that you
should know.

Table 23: Inequality Properties of Addition and Subtraction

For real numbers a, b, and c:

If Then
(a) a < b a+ c < b+ c
(b) a ≤ b a+ c ≤ b+ c
(c) a > b a+ c > b+ c
(d) a ≥ b a+ c ≥ b+ c
(e) a 6= b a+ c 6= b+ c

Note: In all of these, addition can be replaced by subtraction.

Table 24: Inequality Properties of Multiplication and Division

For real numbers a, b, and c, when c 6= 0 and . . .

. . . when c is positive:

If Then
(a) a < b ac < bc
(b) a ≤ b ac ≤ bc
(c) a > b ac > bc
(d) a ≥ b ac ≥ bc
(e) a 6= b ac 6= bc

. . . when c is negative:

If Then
(f) a < b ac > bc
(g) a ≤ b ac ≥ bc
(h) a > b ac < bc
(i) a ≥ b ac ≤ bc
(j) a 6= b ac 6= bc

Note: In all of these, multiplication can be replaced by division.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

A.5. PROPERTIES OF INEQUALITITES 305

Table 25: Inequality Properties of Transitivity

For real numbers a, b, and c:

If Then
(a) a < b and b < c a < c
(b) a ≤ b and b ≤ c a ≤ c
(c) a < b and b ≤ c a < c
(d) a ≤ b and b < c a < c

If Then
(e) a > b and b > c a > c
(f) a ≥ b and b ≥ c a ≥ c
(g) a > b and b ≥ c a > c
(h) a ≥ b and b > c a > c

Transitivity, in the context of relations, is covered in Chapter 8.

Example 210:

Let a = 5, b = 5, and c = 8. a ≤ b is true (5 is less than or equal to
5). b < c is also true (5 < 8). Because we know a ≤ b and b < c, by
Table 25(d) we may conclude that a < c (5 < 8). Note that although
we can also say that 5 ≤ 8 is true, stating that 5 < 8 is more accurate,
because it correctly shows the impossibility of a = c being true when
a ≤ b and b < c.

Example 211:

Problem: Demonstrate that 2m > p when 6n ≥ p and m > 3n, where all
variables are integers.

Solution: By Table 24(c), we can multiply both sides of m > 3n by 2
to produce 2m > 6n. Table 25(g) allows us to conclude that 2m > p
because 2m > 6n and 6n ≥ p.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

306 APPENDIX A. MATH REVIEW

A.6 Summation and Product Notations
Expressing lengthy sums (such as 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8) requires a lot
of writing, or some sort of abbreviation technique (perhaps 1 + 2 + . . . + 8).
Such an abbreviation could be misinterpreted. In this case, is 1 + 2 + . . .+ 8
representing 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 or 1 + 2 + 4 + 8 (the sum of the
first four positive powers of 2)? To help avoid confusion, mathematicians use
summation and product notations.

A.6.1 Summation Notation

Summation notationsummation notation provides an unambiguous way to express the idea that a
long sequence of terms that follow a computational pattern should be added
together. Here is an example:

3∑
i=0

2i (LATEX: \sum\limits_{i=0}^{3} 2^{i}) 11

This example expresses the sum 1 + 2 + 4 + 8. Here’s how: The variable
i takes on integer values, starting with 0 and ending with 3. For each of those
four integers, we replace the i in 2i with the integer and add together the
results. Thus:

Example 212:

The expression
∑3
i=0 2i expands to 20 + 21 + 22 + 23, which is equal to

1 + 2 + 4 + 8 = 15.

Each part of
3∑
i=0

2i has a name:

• Σ (LATEX: \Sigma, for a stand-alone version) is the Greek letter (capital)
sigma. (The lower case sigma, σ (LATEX: \sigma), is used elsewhere in
mathematics, but not to represent summation.)

• i is the index of summation,index of summation or just index for short.
11The \limits command tells LATEX to format the limits above and below the sigma.

Discarding it produces a more compact version
(∑3

i=0 2i
)
, useful for in-line expressions.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

A.6. SUMMATION AND PRODUCT NOTATIONS 307

• 0 is the lower limit. lower limit

• 3 is the upper limit. upper limit

• 2i (LATEX: 2^{i}) is the sequence. sequence

A.6.2 Product Notation

Closely related to summation notation is product notation, product notationwhich is identical
in appearance except for a different Greek letter, Π (LATEX: \Pi), the capital
version of the symbol π (LATEX: \pi) that represents the ratio of a circle’s
circumference to its diameter.

Here’s the same example as above using product instead of summation
notation:

3∏
i=0

2i (LATEX: \prod\limits_{i=0}^{3} 2^{i})

And, of course, the terms from the sequence are multiplied instead of added.

Example 213:

Changing Σ to Π in Example 212:
∏3
i=0 2i = 20 ·21 ·22 ·23 = 1·2·4·8 = 64.

(LATEX: \cdot produces the multiplication dot.)

A.6.3 Interpreting Sequences within Sum and Product
Notation

Whether using summation or product notation, be careful with the formatting
of the sequence, as Example 214 shows.

Example 214:

The summation expression
∑2
i=1

4
i+i is interpreted as

(∑2
i=1

4
i

)
+i, rather

than as
∑2
i=1(4

i + i). In most cases, the evaluation of the two versions is
likely to be different. Here,

(∑2
i=1

4
i

)
+i =

(
4
1 + 4

2

)
+i = 6+i (the trailing

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

308 APPENDIX A. MATH REVIEW

i is out of the scope of the summation, and so remains untouched), while∑2
i=1(4

i + i) =
(

4
1 + 1

)
+
(

4
2 + 2

)
= 5 + 4 = 9.

A.6.4 Nesting Summation and Product Notations

Can the sequence of a summation include another summation, or even a prod-
uct? Certainly!

The key to evaluating these nested notations is to work from the inside to
the outside. That is, expand the inner-most summation or product first, then
deal with the next inner-most, etc. Example 215 demonstrates.

Example 215:

Problem: Evaluate
5∑

a=1

2∑
b=0

(2a+ b).

Solution: Here,
∑2
b=0(2a+ b) is the inner-most summation. Don’t worry

about the a in the sequence; it will be dealt with when we address the
outer summation.

2∑
b=0

(2a+ b) = (2a+ 0) + (2a+ 1) + (2a+ 2) = 6a+ 3

We have simplified the original nested summation to the single summa-
tion

∑5
a=1(6a+ 3), which we already know how to evaluate:

5∑
a=1

(6a+ 3) = (6·1 + 3) + (6·2 + 3) + (6·3 + 3) + (6·4 + 3) + (6·5 + 3)

= 9 + 15 + 21 + 27 + 33
= 105

Thus,
∑5
a=1

∑2
b=0(2a+ b) = 105.

An observation on Example 215: We can simplify
∑5
a=1(6a+3) a bit before

starting its evaluation. Doing so will save us some operations. Notice that
6a+ 3 = 3(2a+ 1). Because we are doing a summation, we can multiply the
result of the summation by three instead of multiplying each sequence term
by three. (You should recognize this as an application of distributivity; see

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

A.6. SUMMATION AND PRODUCT NOTATIONS 309

section A.4. That is,
∑5
a=1(6a + 3) =

∑5
a=1 3(2a + 1) = 3

(∑5
a=1(2a+ 1)

)
.)

You can simplify the summation even further by turning the “+1” into a “+5”
and by pulling out the “2”, but while these steps will simplify the summation,
it makes the expression as a whole a bit of a mess. Try it and see for yourself!

To conclude this subsection, Example 216 examines the connection be-
tween nested summations and nested FOR loops in programming languages.

Example 216:

Problem: Write nested pseudocode FOR loops that computes
5∑

a=1

2∑
b=0

(2a+

b).

Solution: Each Σ represents an iteration operation over the index of
summation, starting with the lower limit and stopping after the upper
limit is considered. The parallels between index-controlled loops (such as
FOR loops) and summation notation are numerous, making FOR loops a
natural stand-in for summation in a program. Apart from the summation-
to-FOR-loop translation, we only need a variable to hold the sum being
computed.

sum <- 0
for a from 1 through 5

for b from 0 through 2
sum <- sum + 2a + b

output sum

In Example 215, we considered the summations essentially independently,
working inside-out. Computers do not treat the instructions representing
nested FOR loops that way, but they could (especially if certain code opti-
mizations are applied). We could manually apply the same inside-out process
to our code example in Example 216 to eliminate the inner loop:

sum <- 0;
for a from 1 through 5

sum <- sum + 6a + 3
output sum

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

310 APPENDIX A. MATH REVIEW

6

4 27

24

3

divisor (s)

quotient (q)

dividend (n)

remainder (r)

Figure A.5: Long Division with Component Names

A.7 Integer Division
Remember learning long division of integers in grade school? All of the num-
bers were integers, and most of the parts had hard-to-remember names. Fig-
ure A.5 reminds us of the parts and their names.

To save space, we can summarize the division in Figure A.5 using the
representation 27/4 = 6 r 3, where the ‘r’ means ‘remainder.’12 In discrete
structures, the results (the quotient and the remainder) are both of use, but
the remainder is of particular interest.

A.7.1 Modulo and Integer Division Operators

The modulomodulo operator, represented by %, the percent sign (LATEX: \%), is a
binary operator that takes the dividend and divisor and produces the remain-
der of the integer division.13 The integer divisioninteger division operator, represented by \,
the back slash (LATEX: \backslash), takes the same operands but produces
the quotient. Finally, the dividesdivides operator, represented by | (LATEX: \mid or
|) also accepts the same operands, but in reverse order and returns a boolean
result: True when the division results in no remainder, false otherwise. The
reversing of the operands is important to remember; that is, 16 % 2 = 0
corresponds to 2 | 16, and we would read it aloud as “2 divides 16.”

Example 217:

Some parallel examples of the modulo, integer division, and divides op-
erators:14

12If you want to be old-school, you can use the ÷ symbol to represent division (LATEX:
\div). It’s called an obelus and is not, to our knowledge, a part of a Borg ship. Yet.

13Sometimes people refer to the modulo operator as the ‘modulus’ operator. ‘Modulus’
can mean several things, but none of them is an alternate name for modulo.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

A.7. INTEGER DIVISION 311

(a) 27 % 4 = 3
(b) 4 % 4 = 0
(c) 4 % 27 = 4
(d) 0 % 5 = 0
(e) 3 % 0 = Undef.

(f) 27 \ 4 = 6
(g) 4 \ 4 = 1
(h) 4 \ 27 = 0
(i) 0 \ 5 = 0
(j) 3 \ 0 = Undef.

(k) 4 | 27 = False
(l) 4 | 4 = True
(m) 27 | 4 = False
(n) 5 | 0 = True
(o) 0 | 3 = Undef.

If any of the modulo examples from Example 217 are confusing, (c) is
probably the one. Think of it this way: In 27 % 4, we ask ourselves how many
instances of the divisor (4) we can subtract from the dividend (27) before
what’s left (the remainder) is less than the divisor. To evaluate 4 % 27, we
ask the same question. Because 4 < 27, we cannot subtract any instances of
27 from 4 without the result being less than 27, and so the remainder is the
original dividend: 4.

A word of caution: When writing “/”, “\”, and “|” by hand, be careful to
indicate the slope (or the lack thereof!) clearly, so that the reader (often the
person grading your answer) understands which operator you are using. The
division symbols are yet another reason to use a scientific document processing
system such as LATEX to format your work whenever possible.

A.7.2 Congruences

Two integers are congruent if they produce the same remainder when divided
by a given value. The following definition has the details.

Definition 78: Congruent congruent

If b, r ∈ Z and m ∈ Z+, then b and r are congruent modulo m (written
b ≡ r (mod m)) if and only if b % m = r % m (or, if and only ifm | (b−r)).
(LATEX: \equiv produces ‘≡’)

Some terminology to go with Definition 78: b is the base, r is the remainder
or residue, and m is the modulus.15

14Why no examples with negative dividends or divisors? Because they really complicate
the story, that’s why! There’s more than one way to handle negatives with modulo, and
negatives don’t often appear with modulo in computer science applications. And before
you ask about floating point values: This is a discrete structures book! (That’s the answer
whenever we don’t feel like dealing with real numbers, for any reason. Yes, it’s very handy.)

15And here is one of those uses of ‘modulus’ now!

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

312 APPENDIX A. MATH REVIEW

Example 218:

Problem: Are 35 and 108 congruent modulo 17?

Solution: As Definition 78 states, 35 ≡ 108 (mod 17)) if 17 | (35 − 108)).
35− 108 = −73, and 17 | − 73 is false. (73 is not a multiple of 17, so 17
cannot divide −73 evenly.) Thus, 35 and 108 are not congruent modulo
17 (which can be written: 35 6≡ 108 (mod 17)). (LATEX: \not\equiv)

If the −73 from Example 218 bothers you, you can switch the base and
the residue: 35 ≡ 108 (mod 17) is equivalent to 108 ≡ 35 (mod 17).

Congruences are useful in many advanced areas of computer science, in-
cluding hash functions and cryptography. Cryptography is hard, though;
telling time is comparatively easy, and congruences apply to time, too, as
Example 219 shows.

Example 219:

Problem: It is now 7:50. What time will it be in 155 minutes?

Solution: As we well know, there are 60 minutes in an hour. An in-
teger division (155/60 = 2 r 35) reveals that 155 minutes is the same as 2
hours and 35 minutes. As a congruence, 155 ≡ 35 (mod 60). Adding 2:35
to 7:50 by adding hours to hours and minutes to minutes gives a time of
9:85, which still needs some work because 85 ≥ 60. Congruences to the
rescue: 85 ≡ 25 (mod 60). Replacing the 85 in 9:85 with the residue (25)
and incrementing the hours by one produces the answer: In 155 minutes,
it will be 10:25.

A.8 Evens and Odds16

When we introduce proof techniques in Chapters 4 and 5, we will start with
simple examples that frequently involve basic properties of integers. Two of
those properties are the ideas of ‘even’ and ‘odd’ numbers.

16You’re thinking of skipping this section, aren’t you? It’s only a page long! Read it!

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

A.9. LOGARITHMS AND EXPONENTS 313

Definition 79: Even even

An integer n is even if and only if there exists an integer k such that
n = 2k.

There are other equally valid ways of defining even. For example, n is
even if and only if 2 | n. Another: n is even if and only if n% 2 = 0. A
third: n is even if and only if n ≡ 0 (mod 2). Why, then, did we choose the
one that needs a second varible to be defined? Because, for many of our proof
examples, that form is the most useful.

Please note: Regardless of the way the concept of evenness is expressed,
the integer zero is an even number. Zero is a special case when we are dividing
by integers, and zero is a special case when we consider positive and negative
values, but zero is not a special case with evens and odds: Zero is even.

With ‘even’ defined, we can move on to ‘odd’:

Definition 80: Odd odd

An integer n is odd if and only if there exists an integer k such that
n = 2k + 1.

All of the other ways we gave to define ‘even’ can be adjusted to define
‘odd’: n is odd if and only if 2 - n (LATEX: \nmid), or if and only if n% 2 = 1,
or if and only if n ≡ 1 (mod 2). We can even adjust the ‘k’ definition by
adding (or subtracting) any odd integer from 2k. For example, n = 2k− 1001
is just as valid as n = 2k+1. The advantage of the “+1” form is that applying
functions, such as squaring, to 2k + 1 is usually much easier than applying
them to an expression such as 2k − 1001.

Finally, notice that we can partition (see Section 6.3.5) all integers into
one or the other of these two subsets. That is, no integer is both even and
odd, and no integer (not even zero!) is neither even nor odd.

A.9 Logarithms and Exponents
In the days before reliable calculating devices, logarithms were used to simplify
otherwise tedious-to-evaluate expressions. We use them today in computer
science primarily for algorithm analysis. For example, consider the binary

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

314 APPENDIX A. MATH REVIEW

search algorithm. The amount of work a computer performs in carrying out
that algorithm is described in terms of a logarithm of the quantity of data
being searched.

The name “logarithm” frightens nearly as many students as does the word
“proof”. You may find them less imposing if you know that they are just
exponents written in a different way. When working with integers, we know
that a sequence of products of the same value can be more tersely expressed
using an exponent. For example, 3 · 3 · 3 · 3 = 34 = 81. In the expression
34 = 81, 3 is the base, 81 is the power, and 4 is the logarithm (or exponent).
Definition 81 gives another way to structure exponential expressions.

Definition 81: BLP Relationshipblp relationship

Assume that b, l, and p are postive real numbers. The Base–Logarithm–
Power (‘BLP’)17 relationship states:

b l = p if and only if logb p = l (LATEX: \log_2)

where b is the base, l is the logarithm, and p is the power.

Example 220:

Problem: Evaluate: log464.

Solution: Let’s name the result of the evaluation of this expression x.
That is, log464 = x. By BLP (Definition 81), we can rewrite log464 = x
as 4x = 64. Because 64 = 43, x = 3, and so log464 = 3.

17The right-hand side of the relationship (logb p = l) is sometimes referred to as the
logarithmic function, but if this entire biconditional relationship has a formal name, no
reference I consulted uses it. Such a key idea deserves some sort of name, so we introduce
Base–Logarithm–Power, or ‘BLP’ for short (and suggest the pronounciation “blip”).

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

A.9. LOGARITHMS AND EXPONENTS 315

Example 221:

Problem: Evaluate: logxx when x > 0.

Solution: At first glance, you might think that the problem is too vaguely
specified for an evaluation to be performed. However, by applying BLP,
we can transform logxx = y into xy = x. As x is just a short-cut way of
writing x1, we see that y = 1, and so logxx = 1. This is a useful identity
to remember.

There are many exponent and logarithm identities that are good to learn.
Table 26 summarizes some of the laws that we think are worth knowing.

Table 26: Laws of Exponents and Logarithms

Laws of Exponents
(a) wx+y = wxwy

(b) (wx)y = wxy

(c) vxwx = (vw)x

(d) wx

wy = wx−y

(e) vx

wx = (v
w

)x

Laws of Logarithms
(f) logb(xy) = y logbx
(g) logb(xy) = logbx + logby
(h) logb(xy) = logbx− logby
(i) blogbx = x

(j) logax = logbx
logba

Example 222:

Problem: Evaluate log5 4 + log5 8
1

log2 5
.

Solution: We start by making the log bases the same, and simplify from
there.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

316 APPENDIX A. MATH REVIEW

log5 4 + log5 8
1

log2 5
= log5 4 + log5 8

1(log5 5
log5 2

) Table 26, Line j, with b = 5

= log5 4 + log5 8
log5 2 Result of Ex. 221, and 1/(1/y) = y

= log5 32
log5 2 Table 26, Line g

= log2 32 Table 26, Line j
= log2 25 It’s good to know powers of 2!
= 5 log2 2 Table 26, Line f
= 5 Example 221 again

To help put logarithic functions in context, Figure A.6 shows a plot of
three functions: f(n) = 1 (a constant function), f(n) = log2 n (a logarithmic
function commonly used in computer science), and f(n) = n (a linear func-
tion), with added axis lines for n = 1 and n = 2. There are several items of
interest in this plot. First, observe how slowly log2 n grows; it is much closer
to f(n) = 1 than to f(n) = n as n becomes larger. Second, observe that
log2 n = 1 when n = 2 (not a surprise, now that we know logb b = 1). Third,
log2 1 = 0 (also not a surprise, as b0 = 1 implies that logb 1 = 0). Fourth,
when n < 1, log2 n < 0. In computer science, n usually represents the size of
a problem in terms of the size of the data structure (that is, the quantity of
data items stored). Thus, values of n below 1 aren’t often of interest.

A.10 Working with Quadratic Equations
We have occasion to factor quadratic equations in this book. Not many oc-
casions, but we do have them. One reason to factor them is to find their
roots.

Definition 82: Quadraticquadratic

A quadratic is an polynomial expression in one variable of the form ax2 +
bx+ c, where a, b, and c are real constants with a 6= 0.

Setting a quadratic equal to a value creates a quadratic equation.quadratic equation

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

A.10. WORKING WITH QUADRATIC EQUATIONS 317

f(n) = 1

f(n) = log2 n

f(n) = n

1 2
0 5 10 15 20

−5

0

5

10

15

20

n

Figure A.6: A linear-axes plot of f(n) = 1, f(n) = log2 n, and f(n) = n.

A.10.1 Factoring Quadratics

First, two definitions.

Definition 83: Perfect Square perfect square

An integer n is a perfect square if the product of some integer m with
itself equals n. Alternatively, n is a perfect square if its square root is an
integer.

Definition 84: Quadratic Formula quadratic formula

Given a quadratic equation ax2 + bx+ c = 0, the value(s) of x that make
this equation true (known as the root(s) of the equation) are given by
the evaluation of the quadratic formula: x = −b±

√
b2−4ac

2a . The expression
within the square root, b2 − 4ac, is the discriminant.

There are several techniques used to factor quadratic polynomials. As this
is a discrete structures book, we will limit ourselves to quadratics that can be

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

318 APPENDIX A. MATH REVIEW

factored using only integers. How do you know? If a, b, and c are integers
and the evaluation of b2 − 4ac (known as thediscriminant discriminant; see Definition 84)
is a perfect square, then the roots will be integers.

Because we are sticking with integers, factoring quadratics will be com-
paratively easy to accomplish. Here are three techniques:

(1) ‘Guess and Check’. Despite the inelegant name, this method does have a
formal origin: Vieta’s formulas.18 Easiest to use when a = 1, in ‘guess and
check’ we look for values y and z such that x2 + bx+ c = (x+ y)(x+ z) =
x2 +(y+z)x+yz. Note that y+z = b and y ·z = c. To apply this method,
we ‘guess’ a pair of factors of c, and ‘check’ that they satisfy those two
equations.

(2) The AC Method. This method, which is a generalization of ‘guess and
check’, is likely to be slower when applied by hand, but you may find
it to be easier to use when a 6= 1. The idea comes from this equation:
ax2 +bx+c = a2x2+abx+ac

a = (ax+d)(ax+e)
a , where d and e are factors of the

product a · c such that d · e = a · c, and their sum equals b. As with ‘guess
and check’, the hard part is finding the factors d and e; after that, just
substitute the values and simplify. The denominator a will divide away
when the discriminant is a perfect square.

(3) Apply the quadratic formula. The factors of ax2 + bx + c are a, x −
−b+
√
b2−4ac

2a , and x− −b−
√
b2−4ac

2a . That is,

ax2 + bx+ c = a
(
x− −b+

√
b2−4ac

2a

) (
x− −b−

√
b2−4ac

2a

)
.

When the discriminant is a perfect square, the square roots will evalu-
ate to integers. This method is as general as they come, but it does rely
on your memory of the quadratic formula and your ability to perform a
fair amount of math by hand without making any mistakes.

Example 223:

Problem: Factor x2 − x− 6 using ‘guess and check’.

Solution: To match the additions in the form ax2 + bx + c, we need

18wikipedia.org/wiki/Vieta’s_formulas

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

wikipedia.org/wiki/Vieta's_formulas

A.10. WORKING WITH QUADRATIC EQUATIONS 319

b and c to be negative; specifically, a = 1, b = −1, and c = −6. In
‘guess and check’, we need to find factors of −6. Ignoring the negation
for a moment, the factors of 6 are 1, 2, 3, and 6. We need a pair of these
four factors whose product is 6. The only two pairs that work are 1 &
6 and 2 & 3. To get yz = −6 from these factors, there are four possi-
bilities for y and z: −1 & 6, 1 & −6, −2 & 3, and 2 & −3. To satisfy
the other equation (y + z = −1), only the pair 2 & −3 works. Thus,
x2 − x− 6 = (x+ 2)(x− 3).

Notice that the pairings of the factors are the smallest with the largest,
the second-smallest with the second-largest, etc. You do not need to consider
all possible pairings of the factors, because the products of the other pairings
won’t equal c.

Example 224:

Problem: Factor 6x2 + 13x− 5 using the AC method.

Solution: Here, a = 6, b = 13, and c = −5. In the AC method, we
want to find factors of ac named d and e such that (ax+d)(ax+e)

a , subject
to de = ac and d+e = b. ac = −30, and 30’s factors are 1, 2, 3, 5, 6, 10, 15,
and 30. Possible d & e pairs are 1 & 30, 2 & 15, 3 & 10, and 5 & 6, for a
total of 8 pairs when negatives are added (remember, we need the product
to be−30). Only the pair−2 & 15 sum to b. Substituting and simplifying:

(ax+d)(ax+e)
a = (6x−2)(6x+15)

6 Substitution

= (2)(3x−1)(3)(2x+5)
6 Factor the binomials

= (3x− 1)(2x+ 5) Divide away the 6’s
Thus, 6x2 + 13x− 5 = (3x− 1)(2x+ 5).

Example 225:

Problem: Factoring 6x2 + 13x− 5 using the AC method was a pain, with
all of those factors of 30!

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

320 APPENDIX A. MATH REVIEW

Solution: You can always use the quadratic formula:

ax2 + bx+ c = a
(
x− −b+

√
b2−4ac

2a

) (
x− −b−

√
b2−4ac

2a

)
= 6

(
x− −13+

√
132−(4·6·−5)
2·6

)(
x− −13−

√
132−(4·6·−5)
2·6

)
= 6

(
x− −13+

√
289

12

) (
x− −13−

√
289

12

)
= 6

(
x− 1

3

) (
x− −5

2

)
= 6

(
3x−1

3

) (
2x+5

2

)
= (3x− 1)(2x+ 5)

After trading the pain of factors of 30 for the tag-team pains of square
roots and fractions, once again 6x2 + 13x− 5 = (3x− 1)(2x+ 5).

A.10.2 Roots of Quadratic Equations

As mentioned in Definition 84, the value(s) for x that cause ax2 + bx+ c = 0
to be true are known as the root(s)roots of the quadratic equation.

Having refreshed our memory of how to factor quadratics, finding the
root(s) of (a.k.a. solving) a quadratic equation is easy. Each quadratic factors
to two binomialsbinomial (expressions that are the sum of two terms; e.g., ax+ d). If
either evaluates to zero, the evalation of the entire quadratic must be zero. It
follows that the roots of the quadratic equation ax2+bx+c = (hx+i)(jx+k) =
0 are simply r1 = − i

h and r2 = −k
j . This shows that a quadratic equation has

at most two unique roots, a situation that will occur when the discriminant
is positive. A single root (r1 = r2) exists when the discriminant evaluates to
zero, and no (real) roots exist otherwise.

Example 226:

Problem: Solve (that is, determine the roots of) 6x2 + 13x− 5.

Solution: In Examples 224 and 225, we factored this quadratic and
learned that 6x2+13x−5 = (3x−1)(2x+5). To make (3x−1)(2x+5) = 0,
we need 3x − 1 = 0 or 2x + 5 = 0. That is, either x = 1

3 or x = −5
2 .

Thus, the roots of 6x2 + 13x− 5 = 0 are r1 = 1
3 and r2 = −5

2 .19

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

A.11. POSITIONAL NUMBER SYSTEMS 321

A.11 Positional Number Systems

Number systems are not core discrete mathematics topics. However, values
drawn from them are often used as the subject of counting problems in discrete
math, and as you will see such problems in this book, the basics of such systems
are worth providing.

Fundamentally, a number system number systemis any representation used to express
quantities. Using pebbles to represent heads of cabbage is a number system,
although not one that scales well to corporate farming. The decimal decimalsystem
we use daily is also an example of a number system, but more specifically a
positional number system. Positional systems are useful because they have
symbols that individually represent small quantities, but those same symbols
can also represent much larger quantities if the symbols are grouped and
ordered.

Definition 85: Positional System positional system

A positional (number) system represents quantities using a combination of
symbols (known as digits or glyphs) and relative locations of those symbols
to represent quantities abstractly. Specifically, a positional system of base
b employs a set of b digits. A sequence of these digits dndn−1 . . . d1d0
represents an integer value of base b equivalent to the decimal quantity
dn · bn + dn−1 · bn−1 + · · ·+ d1 · b1 + d0 · b0 =

n∑
i=0

dib
i.

By changing the base, we can create an infinite number of positional num-
ber systems. Happily, only a few of those are commonly encoutered in com-
puter science.

A.11.1 Decimal (Base 10)

Decimal is a good system with which to start, because we are already quite
familiar with it. We all learned, a long time ago, that there are ten digits
available in decimal: ‘0’,‘1’,‘2’,‘3’,‘4’,‘5’,‘6’,‘7’,‘8’, and ‘9’. As Definition 85
says, the base of the system matches the number of available digits. Thus, we
know decimal’s base is ten. Each digit position in a decimal number represents

19Yeah, OK, this example’s roots aren’t integers. But they are rational!

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

322 APPENDIX A. MATH REVIEW

a power of ten, and the digit in that position tells us how many of that power
we include in the representation of the value.

Example 227:

681 is decimal is a representation of the sum of 600, 80, and 1. That is,
681 = 6 · 102 + 8 · 101 + 1 · 100. Beats the heck out of carrying around 681
pebbles!

A.11.2 Binary (Base 2)

Modern computers store information in primary storage as sequences of elec-
trical charges – ‘power is present’ and ‘no power is present’. Using this two-
valued system as the basis for storing data naturally led to the use of the
binarybinary positional number system.

As the name ‘binary’ suggests, the base is two. As the necessary quantity
of digits is less than the quantity used by decimal, rather than create two new
gylphs, binary simply borrows the first two glyphs from decimal: ‘0’ and ‘1’.
(A single binary digit is called a bitbit 20.) To distinguish binary values from
decimal values, we usually append a subscript of ‘2’ at the end of a binary
value, as in ‘10110112’. (You can append a ‘10’ to the end of decimal values if
you wish, but in practice un-subscripted values are assumed to be base 10.)

Because binary, like decimal, is a positional system, we can determine the
quantity being represented using the summation provided in Definition 85, as
Example 228 demonstrates.

Example 228:

Problem: Determine the decimal quantity represented by the binary value
10110112.

Solution: Each position of a binary value represents a power of 2, starting
with 20 on the right and increasing the exponent by one for each position
we move to the left. Writing the position values beneath the digits is
sometimes helpful:

20The name bit is just a concatenation of the letters ‘bi’ from ‘binary’ and ‘t’ from ‘digit’.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

A.11. POSITIONAL NUMBER SYSTEMS 323

1 0 1 1 0 1 1
64 32 16 8 4 2 1
(26) (25) (24) (23) (22) (21) (20)

From this, we can see how to form the decimal equivalent: We need
a 64 (1 · 26), we don’t include a 32 (0 · 25), etc. Summing the powers of
two that we keep (64 + 16 + 8 + 2 + 1) gives our answer: 9110 represents
the same value as does 10110112.

When converting from binary to decimal, we employed the summation
approach, which has a foundation of multiplication by 2. To convert from
decimal to binary, it stands to reason that division can be used.

To convert from decimal to binary, we divide the decimal value by 2 and
record the remainder. We next divide the quotient of the previous division
by 2, and again save the remainder. This process of repeated divisions con-
tinues until the quotient becomes zero. The sequence of remainders, ordered
from most-recently to least-recently discovered, are the digits of the binary
representation.

Example 229:

Problem: Determine the binary representation of the decimal value 103.

Solution: As we are converting to binary, we perform divisions by 2.
Here, we ‘stack’ the divisions to save space:

0 R 1
2

)
1 R 1

2
)

3 R 0
2

)
6 R 0

2
)

1 2 R 1
2

)
2 5 R 1

2
)

5 1 R 1
2

)
1 0 3

With the stacking, we read the remainders top-down to get the answer:
10310 = 11001112.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

324 APPENDIX A. MATH REVIEW

Actually, this same process works to convert decimal to any other base with
one small change: Take the description above and replace each occurrence of
‘2’ by ‘base b’. Algorithm 1 details the process. Note that a stack is used to
hold the remainders and produce them in the proper order. If you do not know
how a stack operates, you can replace it with an array. Store the remainders
starting at index 0, and output them in reverse order.

Algorithm 26: Decimal to Base b Conversion

1 dividend <- decimal value
2 divisor <- base b
3 initialize stack
4 loop
5 quotient <- dividend \ divisor
6 remainder <- dividend % divisor
7 push remainder onto stack
8 dividend <- quotient
9 if dividend is 0, leave loop

10 end loop
11 pop stack content to output

If you need to do a base conversion manually, the hardest part is remem-
bering the order in which to write the remainders. Remembering what the
stack does for us in Algorithm 1 is one good way to get it right. Another is to
look at Example 229 and think about continuing the division process longer
than is necessary. Doing so will create a bunch of zeros. Only the left side of
the sequence of remainders can have zeros added to it without changing the
result. That is, 12 = 00012 6= 10002.

The really annoying part of the division algorithm is the need to do a
lot of divisions. There is an alternative approach that works well for small
decimal-to-binary conversions and can be done in your head a bit more easily
than several long divisions.

Example 230:

Problem: Determine the binary representation of the decimal value 103
again . . . this time with only the powers of your mind!

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

A.11. POSITIONAL NUMBER SYSTEMS 325

Solution: What we need is the correct collection of powers of 2 that
sum to 103. Start by thinking of the largest power of 2 that is less than
or equal to 103: 64. Write down a ‘1’, and compute 103 − 64: 39. Now
consider all of the powers of 2 from the next smaller power of 2 (32)
down to and including 0, in decreasing order. For each one, if we need it
to reach the remaining amount, write down a ‘1’ and subtract it to get
the new remaining amount (write down a ‘0’ otherwise). Stop when the
remaining amount is zero. In this example, we need 32 to get to 39; we
write down a ‘1’ and compute the difference 39− 32 = 7. We don’t need
16 or 8 (write down two ‘0’s). At this point, it is likely obvious that we
need all of the rest (4, 2, and 1) to reach 7, and so we end with three more
‘1’s. Our final collection is: 1100111.

A.11.3 Octal (Base 8)

Binary may be what computers like to use, but most human beings would
rather not have to work with long strings of zeros and ones. A compromise
positional number system is octal octal(base 8). This is a compromise because the
representations are shorter (easier for people to remember) but also easy to
convert back and forth to binary. As with binary, we can use a subset of the
decimal digits for octal representations, specifically the digits 0 through 7. As
octal is also a positional number system, each digit position is worth a power
of 8. A difference from binary is that we have the ability to have several of
any given power of 8 included in our sum; that is, 428 means that we have 4
8s plus 2 1s. In binary, we could only accept a power of two or ignore it.

The decimal-to-octal and octal-to-decimal conversions can be done as we
did them for binary (repeated multiplications or divisions by 8), or we can do
them in two steps: decimal-to-binary-to-octal and octal-to-binary-to-decimal.

Example 231:

Problem: Convert 20658 to decimal.

Solution: We will do this in two ways: Through binary, and directly.

Option #1: Octal-to-binary-to-decimal. We start with an observation:
A three-digit binary number has possible decimal values ranging from

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

326 APPENDIX A. MATH REVIEW

0 (000) through 7 (111), exactly the range of the octal digits. A con-
sequence is that we can convert octal to binary by simply expanding
each octal digit to its three-digit binary representation. In this example,
20658 → (010)(000)(110)(101) → 100001101012 (after dropping the ex-
traneous leading 0). Having seen Example 228, we know what to do next:
1024 + 32 + 16 + 4 + 1 = 107710.

Option #2: Octal-to-decimal. To accomplish this, we just apply the
sum from Definition 85: 2 · 83 + 6 · 81 + 5 · 80 = 1024 + 48 + 5 = 1077.

Example 232:

Problem: Determine the octal representation of the decimal value 103.

Solution: We will also do this example in two ways.

Option #1: Decimal-to-binary-to-octal. We have already accomplished
the first half of this in Example 229: 10310 = 11001112. To convert from
binary to octal, we can construct groups of three binary digits and con-
vert them to octal digits. Note that the grouping by threes must start on
the right and move left! That is, 11001112 → (1)(100)(111)→ 1478.

Option #2: Decimal-to-octal. We can apply repeated divisions, as used
in Example 229:

0 R 1
8

)
1 R 4

8
)

1 2 R 7
8

)
1 0 3

Thus, 10310 = 1478 (and also verifies the result of Option #1).

A.11.4 Hexadecimal (Base 16)

We motivated octal by presenting it as a compromise between binary and
decimal. Hexadecimalhexadecimal (‘hex’ for short) can be thought of in the same way.
The name ‘hexadecimal’ suggests its base: Together, ‘hex’ for six and ‘decimal’
for ten give 16 as the base, which, like base eight for octal, is a power of two.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

A.11. POSITIONAL NUMBER SYSTEMS 327

But we have a new problem: A base 16 system needs 16 digits, and we only
have the ten from decimal to work with. The solution is to use the first six
letters of the alphabet (‘A’ through ‘F’) to represent the values 10 through
15. Table 27 will be a handy reference until you become more familiar with
the system.

Table 27: Binary, Octal, Decimal, and Hex: 0 through 1510

Binary Octal Decimal Hex
0000 0 0 0
0001 1 1 1
0010 2 2 2
0011 3 3 3
0100 4 4 4
0101 5 5 5
0110 6 6 6
0111 7 7 7

Binary Octal Decimal Hex
1000 10 8 8
1001 11 9 9
1010 12 10 A
1011 13 11 B
1100 14 12 C
1101 15 13 D
1110 16 14 E
1111 17 15 F

Hexadecimal is more commonly used than is octal for two main reasons.
First, because it has a base larger than 10, hex representations of values often
require fewer digits than do the octal or the decimal representations. Second,
a hex digit is representable with four binary digits, which is exactly half of a
byte.21 Thus, we can represent the content of a byte with no more than two
hex digits instead of up to three decimal or octal digits.

If you understand conversions between decimal, binary, and octal, you
understand them for hexadecimal; just remember to use base 16 instead of
base 8. The conversions between octal and hex are easily performed via binary.

Example 233:

Problem: Express 13528 in hexadecimal.

Solution: First, we convert the octal digits into three-digit binary values
to get the binary equivalent: 13528 → (001)(011)(101)(010)→ 10111010102.
To convert from binary to hex, we can group the bits by fours (as we did

21Half a byte is called a nybble. Byte . . . tiny bite . . . nybble; get it? ‘Nibble’ is an
acceptable alternate spelling.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

328 APPENDIX A. MATH REVIEW

by threes for octal). Again, we must group from right to left: 10111010102 →
(10)(1110)(1010)→ 2EA16.

A.11.5 Other Bases

As we hope is becoming clear from the preceding examinations of binary, octal,
and hexadecimal, any integer value greater than one can be used as the base
in a positional number system. Definition 85 can be used to convert any of
them to decimal, and the division technique of Example 229 can convert from
decimal to them.

Example 234:

Problem: Determine the decimal value of 4135.

Solution: By Definition 85: 4 · 52 + 1 · 51 + 3 · 50 = 100 + 5 + 3 = 10810.

Draft: August 16, 2023 Copyright © Lester I. McCann Please do not distribute; thx!

	Contents
	Logic
	What is Logic?
	Propositional Logic
	Logical Connectives
	More English Logic Conversions
	Logical Equivalence

	Quantified Expressions
	Propositions to Predicates
	Evaluating Predicates
	More Detail on Universal Quantification
	More Detail on Existential Quantification
	Mixing Universal and Existential Quantification
	Generalized De Morgan's Laws
	``Exactly n'' Expressions

	Logical Arguments
	Reasoning
	Categorizing Deductive Arguments
	Rules of Inference for Propositions
	Rules of Inference for Predicates
	Fallacies

	Direct Proofs
	The Heartbreak of Probarephobia A 1960s ad campaign for Tegrin skin care products introduced the phrase ``Heartbreak of Psoriasis'' to attract the attention of people with dry, itchy skin.
	Proof Preliminaries
	Direct Proofs
	Disproving Conjectures

	Indirect (``Contra'') Proofs
	Proof by Contraposition
	Proof by Contradiction
	Proving Biconditional Conjectures
	Summary of Direct and Indirect Proof Techniques

	Additional Set Concepts
	What is So Important about Sets?
	Logical Representation of Basic Set Operators
	Some Useful Set Concepts
	Set Identities
	Choosing a Set Representation

	Matrices
	The Utility of Matrices
	Matrix Fundamentals
	Numeric Matrix Operations
	Matrix Powers and the Identity Matrix
	Matrix Operations in Orthographic Projections
	Logical Matrices

	Relations
	(Binary) Relations
	Creating Relations from Relations
	Graph Representations of Relations
	Four Properties of Binary Relations
	Matrix Representations of Relations
	Equivalence Relations
	Partial Orders
	Total Orders

	Math Review
	Fractions
	Rational Numbers
	Set Basics
	Associativity, Friends and a Distant Cousin
	Properties of Inequalitites
	Summation and Product Notations
	Integer Division
	Evens and OddsYou're thinking of skipping this section, aren't you? It's only a page long! Read it!
	Logarithms and Exponents
	Working with Quadratic Equations
	Positional Number Systems

